Détail de l'auteur
Auteur Liang Chen |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multi-GNSS real-time precise clock estimation considering the correction of inter-satellite code biases / Liang Chen in GPS solutions, vol 25 n° 2 (April 2021)
[article]
Titre : Multi-GNSS real-time precise clock estimation considering the correction of inter-satellite code biases Type de document : Article/Communication Auteurs : Liang Chen, Auteur ; Min Li, Auteur ; Ying Zhao, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : 17 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] correction
[Termes IGN] décalage d'horloge
[Termes IGN] erreur systématique inter-systèmes
[Termes IGN] phase
[Termes IGN] positionnement par BeiDou
[Termes IGN] positionnement par Galileo
[Termes IGN] positionnement par GLONASS
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement par GPS
[Termes IGN] récepteur GNSS
[Termes IGN] temps réelRésumé : (Auteur) For reasons mostly related to chip shape distortions, global navigation satellite system (GNSS) observations are corrupted by receiver-dependent biases. These are often stable in the long term, though numerically different depending on the signal frequency, satellite system and receiver manufacturer. Based on the mixed-differenced model combining undifferenced pseudorange with epoch-differenced carrier phase observations, we present a multi-GNSS real-time precise clock estimation model considering correction of inter-satellite code biases (ISCBs). Pre-estimated receiver-dependent ISCB corrections are introduced to correct the inter-receiver, inter-satellite and inter-system biases largely. Then the number of estimated parameters is reduced to a manageable level for real-time estimation. Comparisons with post-processed data show that compared to undifferenced, epoch-differenced and non-bias-corrected mixed-differenced models, the proposed bias-corrected model can greatly reduce the precise clock offset systematic biases, especially for GLONASS and BeiDou. The test results show the root mean square data reductions are improved by up to 96% for GLONASS, 78% for BeiDou and 40% for GPS and Galileo. Numéro de notice : A2021-092 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01065-z Date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.1007/s10291-020-01065-z Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96883
in GPS solutions > vol 25 n° 2 (April 2021) . - 17 p.[article]Evaluation of three ionospheric delay computation methods for ground-based GNSS receivers / Liang Chen in GPS solutions, vol 22 n° 4 (October 2018)
[article]
Titre : Evaluation of three ionospheric delay computation methods for ground-based GNSS receivers Type de document : Article/Communication Auteurs : Liang Chen, Auteur ; Wenting Yi, Auteur ; Weiwei Song, Auteur ; Chuang Shi, Auteur ; Yidong Lou, Auteur ; Cheng Cao, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] erreur systématique inter-systèmes
[Termes IGN] positionnement ponctuel précis
[Termes IGN] récepteur GNSS
[Termes IGN] retard ionosphèrique
[Vedettes matières IGN] Traitement de données GNSSMots-clés libres : carrier-to-code leveling (CCL) method ionospheric-free Hatch–Melbourne–Wubbena (HMW) function Résumé : (Auteur) GNSS observables for ionospheric estimation are commonly based on carrier-to-code leveling (CCL) and precise point positioning (PPP) methods. The CCL method is a geometry-free method which uses carrier phase to level pseudorange observation for decreasing multipath error and observation noise. However, the ionospheric observable based on the CCL has been proven to be affected by leveling errors. The leveling errors are caused by pseudorange multipath and intraday variation of receiver DCB. To obtain more accurate ionospheric observable, the PPP method takes advantage of precise satellite-to-ground range for retrieving slant total electron content and is less affected by the leveling errors. Previous studies have only proven that the ionospheric observables extracted by the two methods are affected by the leveling errors. The influence on ionospheric observable by the pseudorange inter-receiver satellite bias (IRSB) of the receiver has not been taken into consideration. Also, the magnitude of the differences between the ionospheric observables extracted by the two methods has also not been given. In this work, three methods, namely, the CCL, the conventional ionospheric-free PPP method which uses the ionospheric-free Hatch–Melbourne–Wubbena (HMW) function, and the University of Calgary (UOFC) PPP method, are selected to analyze and compare the differences of ionospheric observables and the global ionospheric maps, using a large number of measured data from international GNSS service global stations. Experimental results show that the accuracy of ionospheric observables obtained by the three methods is not only related to the leveling error, but also pseudorange IRSB. The IRSB of the receiver exerts a major effect on the ionospheric observables obtained by the CCL method and a minor effect on the ionospheric observables obtained by the HMW and UOFC methods. The accuracies in the latter case are similar and superior to those obtained by the CCL. The differences of the ionospheric observables obtained by the CCL and UOFC methods, or the CCL and HMW methods, are at decimeter level, whereas the difference of the ionospheric observables obtained by the UOFC and HMW methods is at centimeter level. The UOFC method presented the highest single-frequency pseudorange positioning accuracy using estimated global ionospheric products, followed by the HMW and the CCL methods which presented the lowest positioning accuracy. Numéro de notice : A2018-376 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0788-9 Date de publication en ligne : 01/10/2018 En ligne : https://doi.org/10.1007/s10291-018-0788-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90780
in GPS solutions > vol 22 n° 4 (October 2018)[article]Method for real-time self-calibrating GLONASS code inter-frequency bias and improvements on single point positioning / Liang Chen in GPS solutions, vol 22 n° 4 (October 2018)
[article]
Titre : Method for real-time self-calibrating GLONASS code inter-frequency bias and improvements on single point positioning Type de document : Article/Communication Auteurs : Liang Chen, Auteur ; Min Li, Auteur ; Zhigang Hu, Auteur ; et al., Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] auto-étalonnage
[Termes IGN] données GLONASS
[Termes IGN] données GPS
[Termes IGN] erreur systématique
[Termes IGN] positionnement ponctuel précis
[Termes IGN] temps réelMots-clés libres : code inter-frequency bias (cIFB) Résumé : (Auteur) Utilization of frequency-division multiple access (FDMA) leads to GLONASS pseudorange and carrier phase observations suffering from variable levels inter-frequency bias (IFB). The bias related with carrier phase can be absorbed by ambiguities. However, the unequal code inter-frequency bias (cIFB) will degrade the accuracy of pseudorange observations, which will affect positioning accuracy and convergence of precise point positioning (PPP) when including GLONASS satellites. Based on observations made on un-differenced (UD) ionospheric-free combinations, GLONASS cIFB parameters are estimated as a constant to achieve GLONASS cIFB real-time self-calibration on a single station. A total of 23 stations, with different manufacturing backgrounds, are used to analyze the characteristics of GLONASS cIFB and its relationship with variable receiver hardware. The results show that there is an obvious common trend in cIFBs estimated using broadcast ephemeris for all of the different manufacturers, and there are unequal GLONASS inter-satellite cIFB that match brand manufacture. In addition, a particularly good consistency is found between self-calibrated receiver-dependent GLONASS cIFB and the IFB products of the German Research Centre for Geosciences (GFZ). Via a comparative experiment, it is also found that the algorithm of cIFB real-time self-calibration not only corrects receiver-dependent cIFB, but can moreover eliminate satellite-dependent cIFB, providing more stable results and further improving global navigation satellite system (GNSS) point positioning accuracy. The root mean square (RMS) improvements of single GLONASS standard point positioning (SPP) reach up to 54.18 and 53.80% in horizontal and vertical direction, respectively. The study’s GLONASS cIFB self-estimation can realize good self-consistency between cIFB and stations, working to further promote convergence efficiency relative to GPS + GLONASS PPP. An average improvement percentage of 19.03% is observed, realizing a near-consistent accuracy with GPS + GLONASS fusion PPP. Numéro de notice : A2018-378 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0774-2 Date de publication en ligne : 17/08/2018 En ligne : https://doi.org/10.1007/s10291-018-0774-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90782
in GPS solutions > vol 22 n° 4 (October 2018)[article]