Détail de l'auteur
Auteur Jia-Bin Huang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Adaptive correlation filters with long-term and short-term memory for object tracking / Chao Ma in International journal of computer vision, vol 126 n° 8 (August 2018)
[article]
Titre : Adaptive correlation filters with long-term and short-term memory for object tracking Type de document : Article/Communication Auteurs : Chao Ma, Auteur ; Jia-Bin Huang, Auteur ; Xiaokang Yang, Auteur ; Ming-Hsuan Yang, Auteur Année de publication : 2018 Article en page(s) : pp 771 - 796 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] détection d'objet
[Termes IGN] filtre adaptatif
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] méthode robuste
[Termes IGN] poursuite de cibleRésumé : (Auteur) Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness. Numéro de notice : A2018-414 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11263-018-1076-4 Date de publication en ligne : 16/03/2018 En ligne : https://doi.org/10.1007/s11263-018-1076-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90897
in International journal of computer vision > vol 126 n° 8 (August 2018) . - pp 771 - 796[article]