Détail de l'auteur
Auteur Shahzor Ahmad |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Robust detection and affine rectification of planar homogeneous texture for scene understanding / Shahzor Ahmad in International journal of computer vision, vol 126 n° 8 (August 2018)
[article]
Titre : Robust detection and affine rectification of planar homogeneous texture for scene understanding Type de document : Article/Communication Auteurs : Shahzor Ahmad, Auteur ; Loong-Fah Cheong, Auteur Année de publication : 2018 Article en page(s) : pp 822 - 854 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] compréhension de l'image
[Termes IGN] méthode robuste
[Termes IGN] scène
[Termes IGN] texture d'image
[Termes IGN] transformation affineRésumé : (Auteur) Man-made environments tend to be abundant with planar homogeneous texture, which manifests as regularly repeating scene elements along a plane. In this work, we propose to exploit such structure to facilitate high-level scene understanding. By robustly fitting a texture projection model to optimal dominant frequency estimates in image patches, we arrive at a projective-invariant method to localize such generic, semantically meaningful regions in multi-planar scenes. The recovered projective parameters also allow an affine-ambiguous rectification in real-world images marred with outliers, room clutter, and photometric severities. Comprehensive qualitative and quantitative evaluations are performed that show our method outperforms existing representative work for both rectification and detection. The potential of homogeneous texture for two scene understanding tasks is then explored. Firstly, in environments where vanishing points cannot be reliably detected, or the Manhattan assumption is not satisfied, homogeneous texture detected by the proposed approach is shown to provide alternative cues to obtain a scene geometric layout. Second, low-level feature descriptors extracted upon affine rectification of detected texture are found to be not only class-discriminative but also complementary to features without rectification, improving recognition performance on the 67-category MIT benchmark of indoor scenes. One of our configurations involving deep ConvNet features outperforms most current state-of-the-art work on this dataset, achieving a classification accuracy of 76.90%. The approach is additionally validated on a set of 31 categories (mostly outdoor man-made environments exhibiting regular, repeating structure), being a subset of the large-scale Places2 scene dataset. Numéro de notice : A2018-415 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11263-018-1078-2 Date de publication en ligne : 22/03/2018 En ligne : https://doi.org/10.1007/s11263-018-1078-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90898
in International journal of computer vision > vol 126 n° 8 (August 2018) . - pp 822 - 854[article]