Détail de l'auteur
Auteur Richong Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Human mobility semantics analysis : a probabilistic and scalable approach / Xiaohui Guo in Geoinformatica, vol 22 n° 3 (July 2018)
[article]
Titre : Human mobility semantics analysis : a probabilistic and scalable approach Type de document : Article/Communication Auteurs : Xiaohui Guo, Auteur ; Richong Zhang, Auteur ; Xudong Liu, Auteur ; Jinpeng Huai, Auteur Année de publication : 2018 Article en page(s) : pp 507 - 539 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données localisées
[Termes IGN] données spatiotemporelles
[Termes IGN] mobilité humaine
[Termes IGN] programmation stochastique
[Termes IGN] segmentation sémantique
[Termes IGN] trace numériqueRésumé : (Auteur) The popularity of smart mobile devices generated data, e.g., check-ins and geo-tagged status, offers new opportunity for better understanding human mobility regularity. Existing works on this problem usually resort to explicit frequency statistics models, such as association rules and sequential patterns, and rely on Euclidean distance to measure the spatial dependence. However, the noisiness and uncertainty natures of geospatial data hinder these methods’ application on human mobility in robust and intuitive way. Moreover, the mobility spatial data volume and accumulation speed challenge the traditional methods in efficiency, scalability, and time-space complexity aspects. In this context, we leverage full Bayesian sequential modeling, to revisit mobility regularity discovery from high level probabilistic semantic knowledge perspective, and to alleviate the inherent in mobility modeling and geo-data noisiness induced uncertainty. Specifically, the mobility semantics is embodied by virtue of underlying geospatial topics and topical transitions of mobility trajectories. A classic variational inference is derived to estimate posterior and predictive probabilities, and furthermore, the stochastic optimization is utilized to mitigate the costly computational overhead in message passing subroutine. The experimental results confirm that our approach not only reasonably recognizes the geospatial mobility semantic patterns, but also scales up well to embrace the massive spatial-temporal human mobility activity data. Numéro de notice : A2018-310 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-017-0295-0 Date de publication en ligne : 10/04/2017 En ligne : https://doi.org/10.1007/s10707-017-0295-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90757
in Geoinformatica > vol 22 n° 3 (July 2018) . - pp 507 - 539[article]