Détail de l'auteur
Auteur Hoang Vo |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A framework for annotating OpenStreetMap objects using geo-tagged tweets / Xin Chen in Geoinformatica, vol 22 n° 3 (July 2018)
[article]
Titre : A framework for annotating OpenStreetMap objects using geo-tagged tweets Type de document : Article/Communication Auteurs : Xin Chen, Auteur ; Hoang Vo, Auteur ; Yu Wang, Auteur ; Fusheng Wang, Auteur Année de publication : 2018 Article en page(s) : pp 589 - 613 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] corpus
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] enrichissement sémantique
[Termes IGN] géobalise
[Termes IGN] intégration de données
[Termes IGN] objet géographique
[Termes IGN] OpenStreetMap
[Termes IGN] TwitterRésumé : (Auteur) Recent years have witnessed an explosion of geospatial data, especially in the form of Volunteered Geographic Information (VGI). As a prominent example, OpenStreetMap (OSM) creates a free editable map of the world from a large number of contributors. On the other hand, social media platforms such as Twitter or Instagram supply dynamic social feeds at population level. As much of such data is geo-tagged, there is a high potential on integrating social media with OSM to enrich OSM with semantic annotations, which will complement existing objective description oriented annotations to provide a broader range of annotations. In this paper, we propose a comprehensive framework on integrating social media data and VGI data to derive knowledge about geographical objects, specifically, top relevant annotations from tweets for objects in OSM. We first integrate geo-tagged tweets with OSM data with scalable spatial queries running on MapReduce. We propose a frequency based method for annotating boundary based geographic objects (a polygon), and a probability based method for annotating point based geographic objects (Latitude and Longitude), with consideration of noise. We evaluate our methods using a large geo-tagged tweets corpus and representative geographic objects from OSM, which demonstrates promising results through ground-truth comparison and case studies. We are able to produce up to 80% correct names for geographical objects and discover implicitly relevant information, such as popular exhibitions of a museum, the nicknames or visitors’ impression to a tourism attraction. Numéro de notice : A2018-369 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-018-0323-8 Date de publication en ligne : 20/06/2018 En ligne : https://doi.org/10.1007/s10707-018-0323-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90760
in Geoinformatica > vol 22 n° 3 (July 2018) . - pp 589 - 613[article]