Détail de l'auteur
Auteur Yu Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) / Muhammad Amir Siddique in Remote sensing, vol 13 n° 22 (November-2 2021)
[article]
Titre : The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) Type de document : Article/Communication Auteurs : Muhammad Amir Siddique, Auteur ; Yu Wang, Auteur ; Ninghan Xu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4697 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] champ aléatoire de Markov
[Termes IGN] changement d'occupation du sol
[Termes IGN] changement d'utilisation du sol
[Termes IGN] classification et arbre de régression
[Termes IGN] coefficient de corrélation
[Termes IGN] écosystème urbain
[Termes IGN] flore urbaine
[Termes IGN] ilot thermique urbain
[Termes IGN] modèle de simulation
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] série temporelle
[Termes IGN] température au sol
[Termes IGN] urbanisationRésumé : (auteur) The rapid increase in infrastructural development in populated areas has had numerous adverse impacts. The rise in land surface temperature (LST) and its associated damage to urban ecological systems result from urban development. Understanding the current and future LST phenomenon and its relationship to landscape composition and land use/cover (LUC) changes is critical to developing policies to mitigate the disastrous impacts of urban heat islands (UHIs) on urban ecosystems. Using remote sensing and GIS data, this study assessed the multi-scale relationship of LUCC and LST of the cosmopolitan exponentially growing area of Beijing, China. We investigated the impacts of LUC on LST in urban agglomeration for a time series (2004–2019) of Landsat data using Classification and Regression Trees (CART) and a single channel algorithm (SCA), respectively. We built a CA–Markov model to forecast future (2025 and 2050) LUCC and LST spatial patterns. Our results indicate that the cumulative changes in an urban area (UA) increased by about 908.15 km2 (5%), and 11% of vegetation area (VA) decreased from 2004 to 2019. The correlation coefficient of LUCC including vegetation, water bodies, and built-up areas with LST had values of r = −0.155 (p > 0.419), −0.809 (p = 0.000), and 0.526 (p = 0.003), respectively. The results surrounding future forecasts revealed an estimated 2309.55 km2 (14%) decrease in vegetation (urban and forest), while an expansion of 1194.78 km2 (8%) was predicted for a built-up area from 2019 to 2050. This decrease in vegetation cover and expansion of settlements would likely cause a rise of about ~5.74 °C to ~9.66 °C in temperature. These findings strongly support the hypothesis that LST is directly related to the vegetation index. In conclusion, the estimated overall increase of 7.5 °C in LST was predicted from 2019–2050, which is alarming for the urban community’s environmental health. The present results provide insight into sustainable environmental development through effective urban planning of Beijing and other urban hotspots. Numéro de notice : A2021-860 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13224697 Date de publication en ligne : 20/11/2021 En ligne : https://doi.org/10.3390/rs13224697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99074
in Remote sensing > vol 13 n° 22 (November-2 2021) . - n° 4697[article]A framework for annotating OpenStreetMap objects using geo-tagged tweets / Xin Chen in Geoinformatica, vol 22 n° 3 (July 2018)
[article]
Titre : A framework for annotating OpenStreetMap objects using geo-tagged tweets Type de document : Article/Communication Auteurs : Xin Chen, Auteur ; Hoang Vo, Auteur ; Yu Wang, Auteur ; Fusheng Wang, Auteur Année de publication : 2018 Article en page(s) : pp 589 - 613 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] corpus
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] enrichissement sémantique
[Termes IGN] géobalise
[Termes IGN] intégration de données
[Termes IGN] objet géographique
[Termes IGN] OpenStreetMap
[Termes IGN] TwitterRésumé : (Auteur) Recent years have witnessed an explosion of geospatial data, especially in the form of Volunteered Geographic Information (VGI). As a prominent example, OpenStreetMap (OSM) creates a free editable map of the world from a large number of contributors. On the other hand, social media platforms such as Twitter or Instagram supply dynamic social feeds at population level. As much of such data is geo-tagged, there is a high potential on integrating social media with OSM to enrich OSM with semantic annotations, which will complement existing objective description oriented annotations to provide a broader range of annotations. In this paper, we propose a comprehensive framework on integrating social media data and VGI data to derive knowledge about geographical objects, specifically, top relevant annotations from tweets for objects in OSM. We first integrate geo-tagged tweets with OSM data with scalable spatial queries running on MapReduce. We propose a frequency based method for annotating boundary based geographic objects (a polygon), and a probability based method for annotating point based geographic objects (Latitude and Longitude), with consideration of noise. We evaluate our methods using a large geo-tagged tweets corpus and representative geographic objects from OSM, which demonstrates promising results through ground-truth comparison and case studies. We are able to produce up to 80% correct names for geographical objects and discover implicitly relevant information, such as popular exhibitions of a museum, the nicknames or visitors’ impression to a tourism attraction. Numéro de notice : A2018-369 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-018-0323-8 Date de publication en ligne : 20/06/2018 En ligne : https://doi.org/10.1007/s10707-018-0323-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90760
in Geoinformatica > vol 22 n° 3 (July 2018) . - pp 589 - 613[article]