Détail de l'auteur
Auteur Chunying Ren |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimation of forest above-ground biomass by geographically weighted regression and machine learning with Sentinel imagery / Lin Chen in Forests, vol 9 n° 10 (October 2018)
[article]
Titre : Estimation of forest above-ground biomass by geographically weighted regression and machine learning with Sentinel imagery Type de document : Article/Communication Auteurs : Lin Chen, Auteur ; Chunying Ren, Auteur ; Bai Zhang, Auteur ; Zongming Wang, Auteur ; Yanbiao Xi, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arbre caducifolié
[Termes IGN] biomasse aérienne
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle de simulation
[Termes IGN] montagne
[Termes IGN] régression géographiquement pondérée
[Termes IGN] surveillance forestière
[Termes IGN] texture d'image
[Termes IGN] variable biophysique (végétation)Résumé : (Auteur) Accurate forest above-ground biomass (AGB) is crucial for sustaining forest management and mitigating climate change to support REDD+ (reducing emissions from deforestation and forest degradation, plus the sustainable management of forests, and the conservation and enhancement of forest carbon stocks) processes. Recently launched Sentinel imagery offers a new opportunity for forest AGB mapping and monitoring. In this study, texture characteristics and backscatter coefficients of Sentinel-1, in addition to multispectral bands, vegetation indices, and biophysical variables of Sentinal-2, based on 56 measured AGB samples in the center of the Changbai Mountains, China, were used to develop biomass prediction models through geographically weighted regression (GWR) and machine learning (ML) algorithms, such as the artificial neural network (ANN), support vector machine for regression (SVR), and random forest (RF). The results showed that texture characteristics and vegetation biophysical variables were the most important predictors. SVR was the best method for predicting and mapping the patterns of AGB in the study site with limited samples, whose mean error, mean absolute error, root mean square error, and correlation coefficient were 4 × 10−3, 0.07, 0.08 Mg·ha−1, and 1, respectively. Predicted values of AGB from four models ranged from 11.80 to 324.12 Mg·ha−1, and those for broadleaved deciduous forests were the most accurate, while those for AGB above 160 Mg·ha−1 were the least accurate. The study demonstrated encouraging results in forest AGB mapping of the normal vegetated area using the freely accessible and high-resolution Sentinel imagery, based on ML techniques. Numéro de notice : A2018-478 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f9100582 Date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.3390/f9100582 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91180
in Forests > vol 9 n° 10 (October 2018)[article]