Détail de l'auteur
Auteur Qingxia Zhao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimating forest canopy cover in black locust (Robinia pseudoacacia L.) plantations on the loess plateau using random forest / Qingxia Zhao in Forests, vol 9 n° 10 (October 2018)
[article]
Titre : Estimating forest canopy cover in black locust (Robinia pseudoacacia L.) plantations on the loess plateau using random forest Type de document : Article/Communication Auteurs : Qingxia Zhao, Auteur ; Fei Wang, Auteur ; Jun Zhao, Auteur ; Jingjing Zhou, Auteur ; et al., Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] canopée
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection d'arbres
[Termes IGN] Enhanced vegetation index
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] loess
[Termes IGN] matrice de co-occurrence
[Termes IGN] plantation forestière
[Termes IGN] régression
[Termes IGN] Robinia pseudoacacia
[Termes IGN] Soil Adjusted Vegetation IndexRésumé : (Auteur) The forest canopy is the medium for energy and mass exchange between forest ecosystems and the atmosphere. Remote sensing techniques are more efficient and appropriate for estimating forest canopy cover (CC) than traditional methods, especially at large scales. In this study, we evaluated the CC of black locust plantations on the Loess Plateau using random forest (RF) regression models. The models were established using the relationships between digital hemispherical photograph (DHP) field data and variables that were calculated from satellite images. Three types of variables were calculated from the satellite data: spectral variables calculated from a multispectral image, textural variables calculated from a panchromatic image (Tpan) with a 15 × 15 window size, and textural variables calculated from spectral variables (TB+VIs) with a 9 × 9 window size. We compared different mtry and ntree values to find the most suitable parameters for the RF models. The results indicated that the RF model of spectral variables explained 57% (root mean square error (RMSE) = 0.06) of the variability in the field CC data. The soil-adjusted vegetation index (SAVI) and enhanced vegetation index (EVI) were more important than other spectral variables. The RF model of Tpan obtained higher accuracy (R2 = 0.69, RMSE = 0.05) than the spectral variables, and the grey level co-occurrence matrix-based texture measure—Correlation (COR) was the most important variable for Tpan. The most accurate model was obtained from the TB+VIs (R2 = 0.79, RMSE = 0.05), which combined spectral and textural information, thus providing a significant improvement in estimating CC. This model provided an effective approach for detecting the CC of black locust plantations on the Loess Plateau. Numéro de notice : A2018-477 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f9100623 Date de publication en ligne : 10/10/2018 En ligne : https://doi.org/10.3390/f9100623 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91178
in Forests > vol 9 n° 10 (October 2018)[article]