Détail de l'auteur
Auteur Tim Ritter |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Towards an optimization of sample plot size and scanner position layout for terrestrial laser scanning in multi-scan mode / Tim Ritter in Forests, vol 11 n° 10 (October 2020)
[article]
Titre : Towards an optimization of sample plot size and scanner position layout for terrestrial laser scanning in multi-scan mode Type de document : Article/Communication Auteurs : Tim Ritter, Auteur ; Christoph Gollob, Auteur ; Arne Northdurft, Auteur Année de publication : 2020 Article en page(s) : n° 1099 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Autriche
[Termes IGN] balayage laser
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] placette d'échantillonnage
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestreRésumé : (auteur) A novel approach is presented to model the tree detection probability of terrestrial laser scanning (TLS) in forest inventory applications using a multi-scan mode. The traditional distance sampling framework is further extended to account for multiple scan positions at a single sample plot and to allow for an imperfect detection probability at distance r = 0. The novel methodology is tested with real world data, as well as in simulations. It is shown that the underlying detection model can be parameterized using only data from single scans. Hereby, it is possible to predict the detection probability also for different sample plot sizes and scanner position layouts in a multi-scan setting. Simulations showed that a minor discretization bias can occur if the sample size is small. The methodology enables a generalized optimization of the scanning layout in a multi-scan setting with respect to the detection probability and the sample plot area. This will increase the efficiency of multi-scan TLS-based forest inventories in the future. Numéro de notice : A2020-754 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11101099 Date de publication en ligne : 16/10/2020 En ligne : https://doi.org/10.3390/f11101099 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96438
in Forests > vol 11 n° 10 (October 2020) . - n° 1099[article]Automatic mapping of forest stands based on three-dimensional point clouds derived from terrestrial laser-scanning / Tim Ritter in Forests, vol 8 n° 8 (August 2017)
[article]
Titre : Automatic mapping of forest stands based on three-dimensional point clouds derived from terrestrial laser-scanning Type de document : Article/Communication Auteurs : Tim Ritter, Auteur ; Marcel Schwarz, Auteur ; Andreas Tockner, Auteur ; Friedrich Leisch, Auteur ; Arne Nothdurft, Auteur Année de publication : 2017 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] analyse de groupement
[Termes IGN] Autriche
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Fagus sylvatica
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Larix decidua
[Termes IGN] peuplement forestier
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Préalpes (Europe)
[Termes IGN] semis de points
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Mapping of exact tree positions can be regarded as a crucial task of field work associated with forest monitoring, especially on intensive research plots. We propose a two-stage density clustering approach for the automatic mapping of tree positions, and an algorithm for automatic tree diameter estimates based on terrestrial laser-scanning (TLS) point cloud data sampled under limited sighting conditions. We show that our novel approach is able to detect tree positions in a mixed and vertically structured stand with an overall accuracy of 91.6%, and with omission- and commission error of only 5.7% and 2.7% respectively. Moreover, we were able to reproduce the stand’s diameter in breast height (DBH) distribution, and to estimate single trees DBH with a mean average deviation of ±2.90 cm compared with tape measurements as reference. Numéro de notice : A2017-876 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f8080265 Date de publication en ligne : 25/07/2017 En ligne : https://doi.org/10.3390/f8080265 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91195
in Forests > vol 8 n° 8 (August 2017)[article]