Détail de l'auteur
Auteur Arne Nothdurft |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models / Arne Nothdurft in Forest ecology and management, vol 502 (December-15 2021)
[article]
Titre : Estimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models Type de document : Article/Communication Auteurs : Arne Nothdurft, Auteur ; Christoph Gollob, Auteur ; Ralf Krasnitzer, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119714 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Autriche
[Termes IGN] bois sur pied
[Termes IGN] dommage forestier causé par facteurs naturels
[Termes IGN] échantillonnage
[Termes IGN] estimation bayesienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle de régression
[Termes IGN] modèle mathématique
[Termes IGN] tempête
[Termes IGN] volume en bois
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) A spatial regression model framework is presented to predict growing stock volume loss due to storm Adrian which caused heavy forest damage in the upper Gail valley in Carinthia, Austria, in October 2018. Model parameters were estimated using growing stock volume measured with a terrestrial laser scanner on 62 sample plots distributed across five sub-regions. Predictor variables were derived from high resolution vegetation height measurements collected during an airborne laser scanning campaign. Non-spatial and spatial candidate models were proposed and assessed based on fit to observed data and out-of-sample prediction. Spatial Gaussian processes associated model intercepts and regression coefficients were used to capture spatial dependence. Results show a spatially-varying coefficient model, which allowed the intercept and regression coefficients to vary spatially, yielded the best fit and prediction. Two approaches were considered for prediction over blowdown areas: 1) an areal approach that viewed each blowdown as a single prediction unit indexed by its centroid; and 2) a block approach where each blowdown was partitioned into smaller prediction units to better align with sample plots’ spatial support. Joint prediction was used to acknowledge spatial dependence among block units. Results demonstrated the block approach is preferable as it mitigated change-of-support issues encountered in the areal approach. Despite the small sample size, predictions for 55% of the total 564 blowdown areas, accounting for 93% of the total loss, had a coefficient of variation less than 25%. Key advantages of the proposed regression framework and chosen Bayesian inferential paradigm, were the ability to quantify uncertainty in spatial covariance parameters, propagate parameter uncertainty through to prediction, and provide statistically valid prediction point and interval estimates for individual blowdowns and collections of blowdowns at the sub-region and region scale via posterior predictive distribution summaries. Numéro de notice : A2021-770 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2021.119714 Date de publication en ligne : 07/10/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119714 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98822
in Forest ecology and management > vol 502 (December-15 2021) . - n° 119714[article]Climate sensitive single tree growth modeling using a hierarchical Bayes approach and integrated nested Laplace approximations (INLA) for a distributed lag model / Arne Nothdurft in Forest ecology and management, vol 478 ([15/12/2020])
[article]
Titre : Climate sensitive single tree growth modeling using a hierarchical Bayes approach and integrated nested Laplace approximations (INLA) for a distributed lag model Type de document : Article/Communication Auteurs : Arne Nothdurft, Auteur Année de publication : 2020 Article en page(s) : 14 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] approche hiérarchique
[Termes IGN] Autriche
[Termes IGN] bioclimatologie
[Termes IGN] croissance des arbres
[Termes IGN] dendrochronologie
[Termes IGN] données météorologiques
[Termes IGN] estimation bayesienne
[Termes IGN] Fagus sylvatica
[Termes IGN] intégrale de Laplace
[Termes IGN] Larix decidua
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de régression
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Quercus sessiliflora
[Termes IGN] série temporelle
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) A novel methodological framework is presented for climate-sensitive modeling of annual radial stem increments using tree-ring width time series. The approach is based on a hierarchical Bayes model together with a distributed time lag model that take into account the effects of a series of monthly temperature and precipitation values, as well as their interactions. By using a set of random walk priors, the hierarchical Bayes model allows both the detrending of the individual time series and the regression modeling to be performed simultaneously in a single model step. The approach was applied to comprehensive tree-ring width data from Austria collected on sample plots arranged in triplets representing different mixture types. Bayesian predictions revealed that European larch (Larix decidua Mill.), Norway spruce (Picea abies (L.) H. Karst.), and Scots pine (Pinus sylvestris L.) show positive climate-related growth trends throughout higher elevation sites in Tyrol, and these trends remain unchanged under a mixed-stand scenario. At the lower Austrian sites, Norway spruce was found to show a severely negative growth trend under both the pure- and mixed-stand scenario. The increment rates of European beech (Fagus sylvatica L.) were found to have a negative climate-related trend in pure stands, and the trend diminished through an admixture of spruce or larch. The trends of European larch and sessile oak (Quercus petraea (Matt.) Liebl.) showed stationary behavior, irrespective of the mixture scenario. Scots pine data showed a positive trend at the lower elevation sites under both the pure- and mixed-stand scenario. These findings indicate that species mixing does not lower the climate-related increment fluctuations of beech, oak, pine, and spruce at lower elevation sites. Numéro de notice : A2020-625 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2020.118497 Date de publication en ligne : 07/09/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118497 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96025
in Forest ecology and management > vol 478 [15/12/2020] . - 14 p.[article]Automatic mapping of forest stands based on three-dimensional point clouds derived from terrestrial laser-scanning / Tim Ritter in Forests, vol 8 n° 8 (August 2017)
[article]
Titre : Automatic mapping of forest stands based on three-dimensional point clouds derived from terrestrial laser-scanning Type de document : Article/Communication Auteurs : Tim Ritter, Auteur ; Marcel Schwarz, Auteur ; Andreas Tockner, Auteur ; Friedrich Leisch, Auteur ; Arne Nothdurft, Auteur Année de publication : 2017 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] analyse de groupement
[Termes IGN] Autriche
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Fagus sylvatica
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Larix decidua
[Termes IGN] peuplement forestier
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Préalpes (Europe)
[Termes IGN] semis de points
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Mapping of exact tree positions can be regarded as a crucial task of field work associated with forest monitoring, especially on intensive research plots. We propose a two-stage density clustering approach for the automatic mapping of tree positions, and an algorithm for automatic tree diameter estimates based on terrestrial laser-scanning (TLS) point cloud data sampled under limited sighting conditions. We show that our novel approach is able to detect tree positions in a mixed and vertically structured stand with an overall accuracy of 91.6%, and with omission- and commission error of only 5.7% and 2.7% respectively. Moreover, we were able to reproduce the stand’s diameter in breast height (DBH) distribution, and to estimate single trees DBH with a mean average deviation of ±2.90 cm compared with tape measurements as reference. Numéro de notice : A2017-876 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f8080265 Date de publication en ligne : 25/07/2017 En ligne : https://doi.org/10.3390/f8080265 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91195
in Forests > vol 8 n° 8 (August 2017)[article]