Détail de l'auteur
Auteur Andrew Thomas Hudak |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Predicting stem total and assortment volumes in an industrial pinus taeda L. forest plantation using airborne laser scanning data and random forest / Carlos Alberto Silva in Forests, vol 8 n° 7 (July 2017)
[article]
Titre : Predicting stem total and assortment volumes in an industrial pinus taeda L. forest plantation using airborne laser scanning data and random forest Type de document : Article/Communication Auteurs : Carlos Alberto Silva, Auteur ; Carine Klauberg, Auteur ; Andrew Thomas Hudak, Auteur ; Lee Alexander Vierling, Auteur ; Wan Shafrina Wan Mohd Jaafar, Auteur ; et al., Auteur Année de publication : 2017 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Brésil
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] modèle de simulation
[Termes IGN] Pinus taeda
[Termes IGN] plantation forestière
[Termes IGN] volume en boisRésumé : (Auteur) Improvements in the management of pine plantations result in multiple industrial and environmental benefits. Remote sensing techniques can dramatically increase the efficiency of plantation management by reducing or replacing time-consuming field sampling. We tested the utility and accuracy of combining field and airborne lidar data with Random Forest, a supervised machine learning algorithm, to estimate stem total and assortment (commercial and pulpwood) volumes in an industrial Pinus taeda L. forest plantation in southern Brazil. Random Forest was populated using field and lidar-derived forest metrics from 50 sample plots with trees ranging from three to nine years old. We found that a model defined as a function of only two metrics (height of the top of the canopy and the skewness of the vertical distribution of lidar points) has a very strong and unbiased predictive power. We found that predictions of total, commercial, and pulp volume, respectively, showed an adjusted R2 equal to 0.98, 0.98 and 0.96, with unbiased predictions of −0.17%, −0.12% and −0.23%, and Root Mean Square Error (RMSE) values of 7.83%, 7.71% and 8.63%. Our methodology makes use of commercially available airborne lidar and widely used mathematical tools to provide solutions for increasing the industry efficiency in monitoring and managing wood volume. Numéro de notice : A2017-875 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f8070254 Date de publication en ligne : 17/07/2017 En ligne : https://doi.org/10.3390/f8070254 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91214
in Forests > vol 8 n° 7 (July 2017)[article]