Détail de l'auteur
Auteur Amina Ben Hamida |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
3-D deep learning approach for remote sensing image classification / Amina Ben Hamida in IEEE Transactions on geoscience and remote sensing, vol 56 n° 8 (August 2018)
[article]
Titre : 3-D deep learning approach for remote sensing image classification Type de document : Article/Communication Auteurs : Amina Ben Hamida, Auteur ; Alexandre Benoit, Auteur ; Patrick Lambert, Auteur ; Chokri Ben Amar, Auteur Année de publication : 2018 Article en page(s) : pp 4420 - 4434 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] image hyperspectrale
[Termes IGN] qualité géométrique (image)
[Termes IGN] valeur radiométriqueRésumé : (Auteur) Recently, a variety of approaches have been enriching the field of remote sensing (RS) image processing and analysis. Unfortunately, existing methods remain limited to the rich spatiospectral content of today's large data sets. It would seem intriguing to resort to deep learning (DL)-based approaches at this stage with regard to their ability to offer accurate semantic interpretation of the data. However, the specificity introduced by the coexistence of spectral and spatial content in the RS data sets widens the scope of the challenges presented to adapt DL methods to these contexts. Therefore, the aim of this paper is first to explore the performance of DL architectures for the RS hyperspectral data set classification and second to introduce a new 3-D DL approach that enables a joint spectral and spatial information process. A set of 3-D schemes is proposed and evaluated. Experimental results based on well-known hyperspectral data sets demonstrate that the proposed method is able to achieve a better classification rate than state-of-the-art methods with lower computational costs. Numéro de notice : A2018-470 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2818945 Date de publication en ligne : 20/04/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2818945 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91252
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 8 (August 2018) . - pp 4420 - 4434[article]