Détail de l'auteur
Auteur Zhiwei Wei |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Linear building pattern recognition in topographical maps combining convex polygon decomposition / Zhiwei Wei in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Linear building pattern recognition in topographical maps combining convex polygon decomposition Type de document : Article/Communication Auteurs : Zhiwei Wei, Auteur ; Su Ding, Auteur ; Lu Cheng, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte topographique
[Termes IGN] construction
[Termes IGN] décomposition
[Termes IGN] détection du bâti
[Termes IGN] forme linéaire
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] Ordnance Survey (UK)
[Termes IGN] polygone
[Termes IGN] reconnaissance de formesRésumé : (auteur) Building patterns are crucial for urban form understanding, automated map generalization, and 3 D city model visualization. The existing studies have recognized various building patterns based on visual perception rules in which buildings are considered as a whole. However, some visually aware patterns may fail to be recognized with these approaches because human vision is also proved as a part-based system. This paper first proposed an approach for linear building pattern recognition combining convex polygon decomposition. Linear building patterns including collinear patterns and curvilinear patterns are defined according to the proximity, similarity, and continuity between buildings. Linear building patterns are then recognized by combining convex polygon decomposition, in which a building can be decomposed into sub-buildings for pattern recognition. A novel node concavity is developed based on polygon skeletons which is applicable for building polygons with holes or not in the building decomposition. And building’s orthogonal features are also considered in the building decomposition. Two datasets collected from Ordnance Survey (OS) were used in the experiments to verify the effectiveness of the proposed approach. The results indicate that our approach achieves 25.57% higher precision and 32.23% higher recall in collinear pattern recognition and 15.67% higher precision and 18.52% higher recall in curvilinear pattern recognition when compared to existing approaches. Recognition of other kinds of building patterns including T-shaped and C-shaped patterns combining convex polygon decomposition are also discussed in this approach. Numéro de notice : A2022-263 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2055794 Date de publication en ligne : 27/03/2022 En ligne : https://doi.org/10.1080/10106049.2022.2055794 Format de la ressource électronique : 27/03/2022 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100260
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]On the spatial distribution of buildings for map generalization / Zhiwei Wei in Cartography and Geographic Information Science, Vol 45 n° 6 (November 2018)
[article]
Titre : On the spatial distribution of buildings for map generalization Type de document : Article/Communication Auteurs : Zhiwei Wei, Auteur ; Qingsheng Guo, Auteur ; Lin Wang, Auteur ; Fen Yan, Auteur Année de publication : 2018 Article en page(s) : pp 539 - 555 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] arbre aléatoire minimum
[Termes IGN] bati
[Termes IGN] distribution spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] OpenStreetMap
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Information on spatial distribution of buildings must be explored as part of the process of map generalization. A new approach is proposed in this article, which combines building classification and clustering to enable the detection of class differences within a pattern, as well as patterns within a class. To do this, an analysis of existing parameters describing building characteristics is performed via principal component analysis (PCA), and four major parameters (i.e. convex hull area, IPQ compactness, number of edges, and smallest minimum bounding rectangle orientation) are selected for further classification based on similarities between building characteristics. A building clustering method based on minimum spanning tree (MST) considering rivers and roads is then applied. Theory and experiments show that use of a relative neighbor graph (RNG) is more effective in detecting linear building patterns than either a nearest neighbor graph (NNG), an MST, or a Gabriel graph (GssG). Building classification and clustering are therefore conducted separately using experimental data extracted from OpenStreetMap (OSM), and linear patterns are then recognized within resultant clusters. Experimental results show that the approach proposed in this article is both reasonable and efficient for mining information on the spatial distribution of buildings for map generalization. Numéro de notice : A2018-480 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2018.1433068 Date de publication en ligne : 15/02/2018 En ligne : https://doi.org/10.1080/15230406.2018.1433068 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91258
in Cartography and Geographic Information Science > Vol 45 n° 6 (November 2018) . - pp 539 - 555[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2018061 RAB Revue Centre de documentation En réserve L003 Disponible