Détail de l'auteur
Auteur Fen Yan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
On the spatial distribution of buildings for map generalization / Zhiwei Wei in Cartography and Geographic Information Science, Vol 45 n° 6 (November 2018)
[article]
Titre : On the spatial distribution of buildings for map generalization Type de document : Article/Communication Auteurs : Zhiwei Wei, Auteur ; Qingsheng Guo, Auteur ; Lin Wang, Auteur ; Fen Yan, Auteur Année de publication : 2018 Article en page(s) : pp 539 - 555 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] arbre aléatoire minimum
[Termes IGN] bati
[Termes IGN] distribution spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] OpenStreetMap
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Information on spatial distribution of buildings must be explored as part of the process of map generalization. A new approach is proposed in this article, which combines building classification and clustering to enable the detection of class differences within a pattern, as well as patterns within a class. To do this, an analysis of existing parameters describing building characteristics is performed via principal component analysis (PCA), and four major parameters (i.e. convex hull area, IPQ compactness, number of edges, and smallest minimum bounding rectangle orientation) are selected for further classification based on similarities between building characteristics. A building clustering method based on minimum spanning tree (MST) considering rivers and roads is then applied. Theory and experiments show that use of a relative neighbor graph (RNG) is more effective in detecting linear building patterns than either a nearest neighbor graph (NNG), an MST, or a Gabriel graph (GssG). Building classification and clustering are therefore conducted separately using experimental data extracted from OpenStreetMap (OSM), and linear patterns are then recognized within resultant clusters. Experimental results show that the approach proposed in this article is both reasonable and efficient for mining information on the spatial distribution of buildings for map generalization. Numéro de notice : A2018-480 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2018.1433068 Date de publication en ligne : 15/02/2018 En ligne : https://doi.org/10.1080/15230406.2018.1433068 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91258
in Cartography and Geographic Information Science > Vol 45 n° 6 (November 2018) . - pp 539 - 555[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2018061 RAB Revue Centre de documentation En réserve L003 Disponible