Détail de l'auteur
Auteur Hiyam Elbadri |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Adapting an existing semi-automatized image processing chain to enable Sentinel-2 data classification. / Hiyam Elbadri (2018)
Titre : Adapting an existing semi-automatized image processing chain to enable Sentinel-2 data classification. Type de document : Mémoire Auteurs : Hiyam Elbadri, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2018 Importance : 56 p. Format : 21 x 30 cm Note générale : bibliographie
Rapport de projet pluridisciplinaire, cycle Ingénieur 2e annéeLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte thématique
[Termes IGN] chaîne de traitement
[Termes IGN] classification barycentrique
[Termes IGN] classification non dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] épidémie
[Termes IGN] GRASS
[Termes IGN] image Sentinel-MSI
[Termes IGN] maladie parasitaire
[Termes IGN] Ouganda
[Termes IGN] Python (langage de programmation)
[Termes IGN] R (langage)
[Termes IGN] restauration d'image
[Termes IGN] risque sanitaire
[Termes IGN] segmentation d'image
[Termes IGN] zone à risqueIndex. décimale : PROJET Mémoires : Rapports de projet - stage des ingénieurs de 2e année Résumé : (auteur) Dans un contexte d’une crise épidémiologique dans les villes d’Afrique sub-saharienne, suivie d’une urbanisation croissante, il paraît essentiel de souligner les facteurs clés au développement de plusieurs maladies. C’est dans ce contexte que le projet REACT existe. Ce dernier a pour but de développer des outils afin de faciliter l’étude des maladies contagieuses telle que la malaria avec des techniques de télédétection. Dans le cadre de ce projet, mon rôle était de créer une chaîne automatisée pour des données de Sentinel 2. En premier lieu, il faut les télécharger puis les pré-traiter pour enfin terminer avec une chaîne déjà existante que je devais adapter et qui permet la classification des données Sentinel 2. Les deux chaînes ont été implémentées via un programme Python et se fondent sur l’utilisation de logiciels libres tels que Grass GIS et R. Dans le cadre du projet, l’étude est appliquée à la ville de Kampala dans l’Ouganda, ville présentant les caractéristiques citées précédemment. Cartographier une zone hétérogène telle que Kampala en utilisant des techniques liées à l’"Object Based Image Analysis" est une méthode efficace pour améliorer notre compréhension de la maladie de la malaria et ce, dans un but d’avoir une meilleure prévisibilité. On obtiendra d’abord une segmentation optimale en utilisant une approche non supervisée. Ensuite, en utilisant une classification liée à cette maladie, nous allons classifier notre image en utilisant 3 classifieurs : SVM Radial, Random Forest et K-nearest Neighbor. S’en suivra une analyse de la précision obtenue pour ces 3 classifieurs. Les résultats seront interprétés de telle sorte qu’on pourra en déduire où se situent les zones à risque de la maladie dans la zone d’étude englobant la ville de Kampala et ses environs. Note de contenu : Introduction
1- Internship Description
2- Data, Methods and Tools
3- Case Study
4- Results
ConclusionNuméro de notice : 21826 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire de projet pluridisciplinaire Organisme de stage : IGEAT (Université Libre de Bruxelles) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91333 Documents numériques
peut être téléchargé
Adapting an existing semi-automatized... - pdf auteurAdobe Acrobat PDF