Détail de l'auteur
Auteur Guillaume Saint Pierre |
Documents disponibles écrits par cet auteur (7)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol 10 n° 1 (June 2020)
[article]
Titre : Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning Type de document : Article/Communication Auteurs : Yann Méneroux , Auteur ; Arnaud Le Guilcher , Auteur ; Guillaume Saint Pierre, Auteur ; Mohammad Ghasemi Hamed, Auteur ; Sébastien Mustière , Auteur ; Olivier Orfila, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : pp 101 - 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse fonctionnelle (mathématiques)
[Termes IGN] apprentissage profond
[Termes IGN] carte routière
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] détection d'objet
[Termes IGN] données routières
[Termes IGN] feu de circulation
[Termes IGN] inférence
[Termes IGN] reconnaissance de formes
[Termes IGN] signalisation routière
[Termes IGN] trace GPS
[Termes IGN] trafic routier
[Termes IGN] transformation en ondelettes
[Termes IGN] vitesseRésumé : (auteur) The increasing availability of large-scale global positioning system data stemming from in-vehicle-embedded terminal devices enables the design of methods deriving road network cartographic information from drivers’ recorded traces. Some machine learning approaches have been proposed in the past to train automatic road network map inference, and recently this approach has been successfully extended to infer road attributes as well, such as speed limitation or number of lanes. In this paper, we address the problem of detecting traffic signals from a set of vehicle speed profiles, under a classification perspective. Each data instance is a speed versus distance plot depicting over a hundred profiles on a 100-m-long road span. We proposed three different ways of deriving features: The first one relies on the raw speed measurements; the second one uses image recognition techniques; and the third one is based on functional data analysis. We input them into most commonly used classification algorithms, and a comparative analysis demonstrated that a functional description of speed profiles with wavelet transforms seems to outperform the other approaches with most of the tested classifiers. It also highlighted that random forests yield an accurate detection of traffic signals, regardless of the chosen feature extraction method, while keeping a remarkably low confusion rate with stop signs. Numéro de notice : A2020-336 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41060-019-00197-x Date de publication en ligne : 04/10/2019 En ligne : https://doi.org/10.1007/s41060-019-00197-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93755
in International Journal of Data Science and Analytics JDSA > vol 10 n° 1 (June 2020) . - pp 101 - 119[article]Documents numériques
peut être téléchargé
Traffic signal detection ... - preprintAdobe Acrobat PDF Méthodes d'apprentissage statistique pour la détection de la signalisation routière à partir de véhicules traceurs / Yann Méneroux (2019)
Titre : Méthodes d'apprentissage statistique pour la détection de la signalisation routière à partir de véhicules traceurs Type de document : Thèse/HDR Auteurs : Yann Méneroux , Auteur ; Sébastien Mustière , Directeur de thèse ; Guillaume Saint Pierre, Directeur de thèse Editeur : Champs/Marne : Université Paris-Est Année de publication : 2019 Importance : 292 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de Docteur de l'Université Paris Est dans le cadre de l'Ecole Doctorale Mathématiques et STIC, Signal, Image, AutomatiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement de cartes
[Termes IGN] autocorrélation spatiale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] décomposition empirique du signal
[Termes IGN] détection automatique
[Termes IGN] données GPS
[Termes IGN] modèle mathématique
[Termes IGN] navigation pédestre
[Termes IGN] ondelette de Haar
[Termes IGN] récepteur GPS
[Termes IGN] régression par quantile
[Termes IGN] réseau neuronal convolutif
[Termes IGN] sécurité routière
[Termes IGN] segmentation d'image
[Termes IGN] signalisation routière
[Termes IGN] trace GPS
[Termes IGN] vitesse de déplacementIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Avec la démocratisation des appareils connectés équipés d'un récepteur GPS, de grandes quantités de trajectoires de véhicules deviennent disponibles, notamment via les flottes de véhicules professionnels et les applications mobiles collaboratives de navigation et d'assistance à la conduite. Récemment, les techniques dites de map inference, visant à dériver de l'information cartographique à partir de ces traces GPS, tendent à compléter, voire à remplacer les techniques traditionnelles. Initialement restreintes à la construction de la géométrie des routes, elles sont progressivement utilisées pour enrichir les réseaux existants, et en particulier pour construire une base de données numérique de la signalisation verticale. La connaissance fine et exhaustive de l'infrastructure routière est un prérequis indispensable dans de nombreux domaines : pour les gestionnaires de réseaux et les décideurs dans le cadre de travaux d'aménagement, pour les usagers avec le calcul précis des temps de parcours, mais aussi, plus récemment, dans le cadre du véhicule autonome. Dans ce contexte, les méthodes d'apprentissage statistique apportent une perspective intéressante et garantissent l’adaptabilité de l'approche aux différents cas d'utilisation et à la grande variabilité des données rencontrées en pratique. L'objectif de ce travail de thèse est d'étudier le potentiel de cette classe de méthodes, pour la détection automatique de la signalisation routière, en temps différé, à partir d'un ensemble de profils de vitesse GPS. Le premier cas d'application est celui de la détection des feux de circulation, étendu par la suite a d'autre types de signalisation comme les passages piétons. En premier lieu, nous travaillons sur un jeu de données expérimental de haute qualité, à l'aide duquel nous étudions les performances de plusieurs classifieurs et nous comparons deux représentations mathématiques des données : une approche classique de reconnaissance d'image et une approche fonctionnelle consistant à agréger et à décomposer les signaux de profils de vitesses sur une base d'ondelettes de Haar. Les résultats obtenus montrent la pertinence de l'approche fonctionnelle, en particulier lorsqu'elle est combinée à l'algorithme des forêts aléatoires, en termes de fiabilité de détection et de temps de calcul. L'approche est alors appliquée sur d'autres types d'éléments de l'infrastructure. Dans un second temps, nous tentons d'adapter la méthode proposée sur le cas de données observationnelles, i.e. acquises en environnement non-contrôlé, pour lesquelles nous cherchons également à estimer la position des feux de signalisation par régression statistique. Les résultats montrent la sensibilité de l'approche axe sur l'apprentissage face à des données fortement bruitées ainsi que la difficulté liée à la définition de l'emprise spatiale des instances individuelles sur un réseau routier complexe. Nous tentons de lever ce second verrou à l'aide d'approches globales fondées sur une segmentation d'image par réseau de neurones convolutionnel. Enfin, nous expérimentons une approche permettant d'exploiter. L'autocorrélation spatiale des variables cibles sur les instances individuelles à l'aide de la topologie du graphe routier et en modélisant la zone d'étude sous forme d'un champ de Markov conditionnel. Les résultats obtenus montrent une amélioration des performances de détection par rapport à l'apprentissage non-structuré. Ces travaux de thèse ont également suscité le développement de méthodes originales de prétraitement des trajectoires GPS (filtrage, interpolation, débiaisage et recalage sur un réseau routier de référence) ainsi que l'élaboration de critères objectifs d'évaluation de la qualité de ces pré-traitements. Note de contenu : 1- Cadre général et enjeux de la thèse
2- Méthodes et algorithmes pour le pré-traitement des trajectoires GPS
3- Comparaison des approches image et fonctionnelle en conditions expérimentale
4- Etude du potentiel des méthodes d'apprentissage sur un cas opérationnel
5- Approches globales : réseaux de neurones artificiels et apprentissage structuréNuméro de notice : 25687 Affiliation des auteurs : LASTIG COGIT (2012-2019) Thématique : GEOMATIQUE Nature : Thèse française Note de thèse : thèse de Doctorat : Signal, Image, Automatique : Paris-Est : 2019 Organisme de stage : LaSTIG (IGN) nature-HAL : Thèse DOI : sans Date de publication en ligne : 28/02/2020 En ligne : https://theses.hal.science/tel-02493936 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94716 Convolutional neural network for traffic signal inference based on GPS traces / Yann Méneroux (2018)
contenu dans Spatial big data and machine learning in GIScience, Workshop at GIScience 2018, Melbourne, Australia, 28 August 2018 / Martin Raubal (2018)
Titre : Convolutional neural network for traffic signal inference based on GPS traces Type de document : Article/Communication Auteurs : Yann Méneroux , Auteur ; V. Dizier, Auteur ; Mathieu Margollé, Auteur ; Marie-Dominique Van Damme , Auteur ; Hiroshi Kanasugi, Auteur ; Arnaud Le Guilcher , Auteur ; Guillaume Saint Pierre, Auteur ; Yugo Kato, Auteur Editeur : Zurich : Eidgenossische Technische Hochschule ETH - Ecole Polytechnique Fédérale de Zurich EPFZ Année de publication : 2018 Projets : 1-Pas de projet / Conférence : Workshop 2018 on Spatial big data and machine learning 28/08/2018 28/08/2018 Melbourne Australie OA Proceedings Importance : pp 9 - 12 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] données maillées
[Termes IGN] réseau neuronal convolutif
[Termes IGN] trace GPS
[Termes IGN] trafic routier
[Termes IGN] traitement de données localiséesRésumé : (auteur) Map inference techniques aim at using GPS trajectories collected from a fleet of vehicles, to infer geographic information and enrich road map databases. In this paper, we investigate whether a Convolutional Neural Network can detect traffic signals on a raster map of features computed from a large dataset of GPS traces. Experimentation revealed that our model is able to capture traffic signal pattern signature on this very specific case of unnatural input images. Performance indices are encouraging but need to be improved through a more refined tuning of the workflow. Numéro de notice : C2018-053 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91340 Documents numériques
en open access
CNN for traffic signal inference ... - pdf éditeurAdobe Acrobat PDF Detection and localization of traffic signals with GPS floating car data and Random Forest / Yann Méneroux (2018)
Titre : Detection and localization of traffic signals with GPS floating car data and Random Forest Type de document : Article/Communication Auteurs : Yann Méneroux , Auteur ; Hiroshi Kanasugi, Auteur ; Guillaume Saint Pierre, Auteur ; Arnaud Le Guilcher , Auteur ; Sébastien Mustière , Auteur ; Ryosuke Shibasaki, Auteur ; Yugo Kato, Auteur Editeur : Leibniz [Allemagne] : Schloss Dagstuhl – Leibniz-Zentrum für Informatik Année de publication : 2018 Collection : LIPIcs Leibniz International Proceedings in Informatics, ISSN 1868-8969 num. 114 Projets : 1-Pas de projet / Conférence : GIScience 2018, 10th International Conference on Geographic Information Science 28/08/2018 31/08/2018 Melbourne Australie Open Access Proceedings Importance : 15 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage automatique
[Termes IGN] base de données routières
[Termes IGN] carte routière
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] distribution spatiale
[Termes IGN] guidage de véhicules
[Termes IGN] inférence
[Termes IGN] Japon
[Termes IGN] trace GPS
[Termes IGN] trafic routier
[Termes IGN] traitement de données localisées
[Termes IGN] villeRésumé : (auteur) As Floating Car Data are becoming increasingly available, in recent years many research works focused on leveraging them to infer road map geometry, topology and attributes. In this paper, we present an algorithm, relying on supervised learning to detect and localize traffic signals based on the spatial distribution of vehicle stop points. Our main contribution is to provide a single framework to address both problems. The proposed method has been experimented with a one-month dataset of real-world GPS traces, collected on the road network of Mitaka (Japan). The results show that this method provides accurate results in terms of localization and performs advantageously compared to the OpenStreetMap database in exhaustivity. Among many potential applications, the output predictions may be used as a prior map and/or combined with other sources of data to guide autonomous vehicles. Numéro de notice : C2018-051 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.4230/LIPIcs.GISCIENCE.2018.11 Date de publication en ligne : 30/07/2018 En ligne : http://drops.dagstuhl.de/opus/volltexte/2018/9339/ Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91335 Documents numériques
en open access
Detection and localization of traffic signals ... - pdf éditeurAdobe Acrobat PDF Utilisation de véhicules traceurs pour la détection et la localisation de l'infrastructure routière par apprentissage automatique / Yann Méneroux (2018)
contenu dans 27èmes Journées de la Recherche de l'IGN / Journées Recherche de l'IGN 2018, 27es Journées (22 - 23 mars 2018; Cité Descartes, Champs-sur-Marne, France) (2018)
Titre : Utilisation de véhicules traceurs pour la détection et la localisation de l'infrastructure routière par apprentissage automatique Type de document : Article/Communication Auteurs : Yann Méneroux , Auteur ; Arnaud Le Guilcher , Auteur ; Hiroshi Kanasugi, Auteur ; Guillaume Saint Pierre, Auteur ; Sébastien Mustière , Auteur ; Ryosuke Shibasaki, Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2018 Conférence : Journées Recherche de l'IGN 2018, 27es Journées 22/03/2018 23/03/2018 Champs-sur-Marne France programme sans actes Langues : Français (fre) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] détection d'objet
[Termes IGN] espace urbain
[Termes IGN] feu de circulation
[Termes IGN] réseau routier
[Termes IGN] trafic routierRésumé : (Auteur) Avec la démocratisation des appareils connectés équipés de récepteur GPS, de grandes quantités de trajectoires de véhicules deviennent disponibles. Récemment, les techniques dites de map inference, visant à dériver de l’information cartographique à partir de traces GPS, tendent à compléter les techniques traditionnelles. Initialement restreintes à la construction de la géométrie des routes, elles sont progressivement utilisées pour enrichir les réseaux existants. Les méthodes d’apprentissage statistique (par exemple, réseaux de neurones, forêts aléatoires...) apportent une perspective intéressante et garantissent l’adaptabilité de l’approche aux différents cas d’utilisation. Nous nous intéressons ici à la détection des feux tricolores, en travaillant dans un premier temps sur un jeu de données expérimental, sur lequel nous comparons les performances d’approches dites «image» et «fonctionnelle». Nous tentons ensuite d’étendre les résultats obtenus sur des données réelles. Numéro de notice : C2018-087 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE/POSITIONNEMENT/URBANISME Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91539 Documents numériques
en open access
Utilisation de véhicules traceurs pour la détection - diaporama de présentationAdobe Acrobat PDF Positional accuracy control in dense urban environment with low-cost receiver and multi-constellation GNSS / Yann Méneroux (2017)PermalinkUsing surrogate road network for map-matching: A sensitivity analysis of positional accuracy / Yann Méneroux (2017)Permalink