Détail de l'auteur
Auteur Josselin Aval |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detection of individual trees in urban alignment from airborne data and contextual information: A marked point process approach / Josselin Aval in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)
[article]
Titre : Detection of individual trees in urban alignment from airborne data and contextual information: A marked point process approach Type de document : Article/Communication Auteurs : Josselin Aval, Auteur ; Jean Demuynck, Auteur ; Emmanuel Zenou, Auteur ; Sophie Fabre, Auteur ; David Sheeren , Auteur ; Mathieu Fauvel, Auteur ; Karine R.M. Adeline, Auteur ; Xavier Briottet , Auteur Année de publication : 2018 Article en page(s) : pp 197 - 210 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] arbre urbain
[Termes IGN] canopée
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] hauteur des arbres
[Termes IGN] houppier
[Termes IGN] image hyperspectrale
[Termes IGN] modèle numérique de surface
[Termes IGN] prise en compte du contexte
[Termes IGN] processus ponctuel marqué
[Termes IGN] système d'information géographique
[Termes IGN] Toulouse
[Termes IGN] zone urbaineRésumé : (Auteur) With the current expansion of cities, urban trees have an important role for preserving the health of its inhabitants. With their evapotranspiration, they reduce the urban heat island phenomenon, by trapping CO2 emission, improve air quality. In particular, street trees or alignment trees, create shade on the road network, are structuring elements of the cities and decorate the roads. Street trees are also subject to specific conditions as they have little space for growth, are pruned and can be affected by the spread of diseases in single-species plantations. Thus, their detection, identification and monitoring are necessary. In this study, an approach is proposed for mapping these trees that are characteristic of the urban environment. Three areas of the city of Toulouse in the south of France are studied. Airborne hyperspectral data and a Digital Surface Model (DSM) for high vegetation detection are used. Then, contextual information is used to identify the street trees. Indeed, Geographic Information System (GIS) data are considered to detect the vegetation canopies close to the streets. Afterwards, individual street tree crown delineation is carried out by modeling the discriminative contextual features of individual street trees (hypotheses of small angle between the trees and similar heights) based on Marked Point Process (MPP). Compared to a baseline individual tree crown delineation method based on region growing, our method logically provides the best results with F-score values of 91%, 75% and 85% against 70%, 41% and 20% for the three studied areas respectively. Our approach mainly succeeds in identifying the street trees. In addition, the contribution of the angle, the height and the GIS data in the street tree mapping has been studied. The results encourage the use of the angle, the height and the GIS data together. However, with only the angle and the height, the results are similar to those obtained with the inclusion of the GIS data for the first and the second study cases with F-score values of 88%, 79% and 62% against 91%, 75% and 85% for the three study cases respectively. Finally, it is shown that the GIS data only is not sufficient. Numéro de notice : A2018-538 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.09.016 Date de publication en ligne : 21/10/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.09.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91552
in ISPRS Journal of photogrammetry and remote sensing > vol 146 (December 2018) . - pp 197 - 210[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018131 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018133 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018132 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt