Détail de l'auteur
Auteur Silvano Galliani |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Super-resolution of Sentinel-2 images : Learning a globally applicable deep neural network / Charis Lanaras in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)
[article]
Titre : Super-resolution of Sentinel-2 images : Learning a globally applicable deep neural network Type de document : Article/Communication Auteurs : Charis Lanaras, Auteur ; José Bioucas-Dias, Auteur ; Silvano Galliani, Auteur ; Emmanuel P. Baltsavias, Auteur ; Konrad Schindler, Auteur Année de publication : 2018 Article en page(s) : pp 305 - 319 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bande spectrale
[Termes IGN] échantillonnage de données
[Termes IGN] erreur moyenne quadratique
[Termes IGN] image à basse résolution
[Termes IGN] image Sentinel-MSI
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pas d'échantillonnage au sol
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) The Sentinel-2 satellite mission delivers multi-spectral imagery with 13 spectral bands, acquired at three different spatial resolutions. The aim of this research is to super-resolve the lower-resolution (20 m and 60 m Ground Sampling Distance – GSD) bands to 10 m GSD, so as to obtain a complete data cube at the maximal sensor resolution. We employ a state-of-the-art convolutional neural network (CNN) to perform end-to-end upsampling, which is trained with data at lower resolution, i.e., from 40 20 m, respectively 360 60 m GSD. In this way, one has access to a virtually infinite amount of training data, by downsampling real Sentinel-2 images. We use data sampled globally over a wide range of geographical locations, to obtain a network that generalises across different climate zones and land-cover types, and can super-resolve arbitrary Sentinel-2 images without the need of retraining. In quantitative evaluations (at lower scale, where ground truth is available), our network, which we call DSen2, outperforms the best competing approach by almost 50% in RMSE, while better preserving the spectral characteristics. It also delivers visually convincing results at the full 10 m GSD. Numéro de notice : A2018-540 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.09.018 Date de publication en ligne : 21/10/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.09.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91554
in ISPRS Journal of photogrammetry and remote sensing > vol 146 (December 2018) . - pp 305 - 319[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018131 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018133 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018132 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt