Détail de l'auteur
Auteur Lizhe Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification / Wei Han in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
[article]
Titre : A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification Type de document : Article/Communication Auteurs : Wei Han, Auteur ; Ruyi Feng, Auteur ; Lizhe Wang, Auteur ; Yafan Cheng, Auteur Année de publication : 2018 Article en page(s) : pp 23 - 43 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de sensibilité
[Termes IGN] apprentissage profond
[Termes IGN] classification semi-dirigée
[Termes IGN] réseau neuronal convolutif
[Termes IGN] scèneRésumé : (Auteur) High resolution remote sensing (HRRS) image scene classification plays a crucial role in a wide range of applications and has been receiving significant attention. Recently, remarkable efforts have been made to develop a variety of approaches for HRRS scene classification, wherein deep-learning-based methods have achieved considerable performance in comparison with state-of-the-art methods. However, the deep-learning-based methods have faced a severe limitation that a great number of manually-annotated HRRS samples are needed to obtain a reliable model. However, there are still not sufficient annotation datasets in the field of remote sensing. In addition, it is a challenge to get a large scale HRRS image dataset due to the abundant diversities and variations in HRRS images. In order to address the problem, we propose a semi-supervised generative framework (SSGF), which combines the deep learning features, a self-label technique, and a discriminative evaluation method to complete the task of scene classification and annotating datasets. On this basis, we further develop an extended algorithm (SSGA-E) and evaluate it by exclusive experiments. The experimental results show that the SSGA-E outperforms most of the fully-supervised methods and semi-supervised methods. It has achieved the third best accuracy on the UCM dataset, the second best accuracy on the WHU-RS, the NWPU-RESISC45, and the AID datasets. The impressive results demonstrate that the proposed SSGF and the extended method is effective to solve the problem of lacking an annotated HRRS dataset, which can learn valuable information from unlabeled samples to improve classification ability and obtain a reliable annotation dataset for supervised learning. Numéro de notice : A2018-489 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.11.004 Date de publication en ligne : 14/11/2017 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.11.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91225
in ISPRS Journal of photogrammetry and remote sensing > vol 145 - part A (November 2018) . - pp 23 - 43[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018113 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt