Détail de l'auteur
Auteur Mercedes Eugenia Paoletti |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A Single Model CNN for Hyperspectral Image Denoising / Alessandro Maffei in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
[article]
Titre : A Single Model CNN for Hyperspectral Image Denoising Type de document : Article/Communication Auteurs : Alessandro Maffei, Auteur ; Juan Mario Haut, Auteur ; Mercedes Eugenia Paoletti, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2516 - 2529 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bande spectrale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] filtrage d'information
[Termes IGN] filtrage du bruit
[Termes IGN] image hyperspectrale
[Termes IGN] information géographique
[Termes IGN] signature spectraleRésumé : (auteur) Denoising is a common preprocessing step prior to the analysis and interpretation of hyperspectral images (HSIs). However, the vast majority of methods typically adopted for HSI denoising exploit architectures originally developed for grayscale or RGB images, exhibiting limitations when processing high-dimensional HSI data cubes. In particular, traditional methods do not take into account the high spectral correlation between adjacent bands in HSIs, which leads to unsatisfactory denoising performance as the rich spectral information present in HSIs is not fully exploited. To overcome this limitation, this article considers deep learning models—such as convolutional neural networks (CNNs)—to perform spectral–spatial HSI denoising. The proposed model, called HSI single denoising CNN (HSI-SDeCNN), efficiently takes into consideration both the spatial and spectral information contained in HSIs. Experimental results on both synthetic and real data demonstrate that the proposed HSI-SDeCNN outperforms other state-of-the-art HSI denoising methods. Source code: https://github.com/mhaut/HSI-SDeCNN Numéro de notice : A2020-199 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2952062 Date de publication en ligne : 26/11/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2952062 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94869
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2516 - 2529[article]A new deep convolutional neural network for fast hyperspectral image classification / Mercedes Eugenia Paoletti in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
[article]
Titre : A new deep convolutional neural network for fast hyperspectral image classification Type de document : Article/Communication Auteurs : Mercedes Eugenia Paoletti, Auteur ; Juan Mario Haut, Auteur ; Javier Plaza, Auteur ; Antonio J. Plaza, Auteur Année de publication : 2018 Article en page(s) : pp 120 - 147 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal
[Termes IGN] données localisées 3D
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs have proved to be very effective in areas such as image recognition and classification, especially for the classification of large sets composed by two-dimensional images. However, their application to multispectral and hyperspectral images faces some challenges, especially related to the processing of the high-dimensional information contained in multidimensional data cubes. This results in a significant increase in computation time. In this paper, we present a new CNN architecture for the classification of hyperspectral images. The proposed CNN is a 3-D network that uses both spectral and spatial information. It also implements a border mirroring strategy to effectively process border areas in the image, and has been efficiently implemented using graphics processing units (GPUs). Our experimental results indicate that the proposed network performs accurately and efficiently, achieving a reduction of the computation time and increasing the accuracy in the classification of hyperspectral images when compared to other traditional ANN techniques. Numéro de notice : A2018-492 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.11.021 Date de publication en ligne : 06/12/2017 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.11.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91235
in ISPRS Journal of photogrammetry and remote sensing > vol 145 - part A (November 2018) . - pp 120 - 147[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018113 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt