Détail de l'auteur
Auteur Yinghui Xing |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Pan-sharpening via deep metric learning / Yinghui Xing in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
[article]
Titre : Pan-sharpening via deep metric learning Type de document : Article/Communication Auteurs : Yinghui Xing, Auteur ; Min Wang, Auteur ; Shuyuan Yang, Auteur ; Licheng Jiao, Auteur Année de publication : 2018 Article en page(s) : pp 165 - 183 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Neighbors Embedding based pansharpening methods have received increasing interests in recent years. However, image patches do not strictly follow the similar structure in the shallow MultiSpectral (MS) and PANchromatic (PAN) image spaces, consequently leading to a bias to the pansharpening. In this paper, a new deep metric learning method is proposed to learn a refined geometric multi-manifold neighbor embedding, by exploring the hierarchical features of patches via multiple nonlinear deep neural networks. First of all, down-sampled PAN images from different satellites are divided into a large number of training image patches and are then grouped coarsely according to their shallow geometric structures. Afterwards, several Stacked Sparse AutoEncoders (SSAE) with similar structures are separately constructed and trained by these grouped patches. In the fusion, image patches of the source PAN image pass through the networks to extract features for formulating a deep distance metric and thus deriving their geometric labels. Then, patches with the same geometric labels are grouped to form geometric manifolds. Finally, the assumption that MS patches and PAN patches form the same geometric manifolds in two distinct spaces, is cast on geometric groups to formulate geometric multi-manifold embedding for estimating high resolution MS image patches. Some experiments are taken on datasets acquired by different satellites. The experimental results demonstrate that our proposed method can obtain better fusion results than its counterparts in terms of visual results and quantitative evaluations. Numéro de notice : A2018-493 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.01.016 Date de publication en ligne : 17/02/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.01.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91236
in ISPRS Journal of photogrammetry and remote sensing > vol 145 - part A (November 2018) . - pp 165 - 183[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018113 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt