Détail de l'auteur
Auteur Scott C. Stark |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Leaf area density from airborne LiDAR: Comparing sensors and resolutions in a temperate broadleaf forest ecosystem / Aaron G. Kamoske in Forest ecology and management, vol 433 (15 February 2019)
[article]
Titre : Leaf area density from airborne LiDAR: Comparing sensors and resolutions in a temperate broadleaf forest ecosystem Type de document : Article/Communication Auteurs : Aaron G. Kamoske, Auteur ; Kyla M. Dahlin, Auteur ; Scott C. Stark, Auteur ; Shawn P. Serbin, Auteur Année de publication : 2019 Article en page(s) : pp 364 - 375 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] densité du feuillage
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] feuillu
[Termes IGN] forêt tempérée
[Termes IGN] Leaf Area Index
[Termes IGN] R (langage)
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) Forest processes that play an essential role in carbon sequestration, such as light use efficiency, photosynthetic capacity, and trace gas exchange, are closely tied to the three-dimensional structure of forest canopies. However, the vertical distribution of leaf traits is not uniform; leaves at varying vertical positions within the canopy are physiologically unique due to differing light and environmental conditions, which leads to higher carbon storage than if light conditions were constant throughout the canopy. Due to this within-canopy variation, three-dimensional structural traits are critical to improving our estimates of global carbon cycling and storage by Earth system models and to better understanding the effects of disturbances on carbon sequestration in forested ecosystems. In this study, we describe a reproducible and open-source methodology using the R programming language for estimating leaf area density (LAD; the total leaf area per unit of volume) from airborne LiDAR. Using this approach, we compare LAD estimates at the Smithsonian Environmental Research Center in Maryland, USA, from two airborne LiDAR systems, NEON AOP and NASA G-LiHT, which differ in survey and instrument specifications, collections goals, and laser pulse densities. Furthermore, we address the impacts of the spatial scale of analysis as well as differences in canopy penetration and pulse density on LAD and leaf area index (LAI) estimates, while offering potential solutions to enhance the accuracy of these estimates. LAD estimates from airborne LiDAR can be used to describe the three-dimensional structure of forests across entire landscapes. This information can help inform forest management and conservation decisions related to the estimation of aboveground biomass and productivity, the response of forests to large-scale disturbances, the impacts of drought on forest health, the conservation of bird habitat, as well as a host of other important forest processes and responses. Numéro de notice : A2019-008 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.foreco.2018.11.017 Date de publication en ligne : 21/11/2018 En ligne : https://doi.org/10.1016/j.foreco.2018.11.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91601
in Forest ecology and management > vol 433 (15 February 2019) . - pp 364 - 375[article]