Détail de l'auteur
Auteur Bo Li |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
3D LiDAR aided GNSS/INS integration fault detection, localization and integrity assessment in urban canyons / Zhipeng Wang in Remote sensing, vol 14 n° 18 (September-2 2022)
[article]
Titre : 3D LiDAR aided GNSS/INS integration fault detection, localization and integrity assessment in urban canyons Type de document : Article/Communication Auteurs : Zhipeng Wang, Auteur ; Bo Li, Auteur ; Zhiqiang Dan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4641 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canyon urbain
[Termes IGN] couplage GNSS-INS
[Termes IGN] détection de cible
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur de positionnement
[Termes IGN] filtre adaptatif
[Termes IGN] intégration de données
[Termes IGN] intégrité des données
[Termes IGN] khi carré
[Termes IGN] semis de pointsRésumé : (auteur) The performance of Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) integrated navigation can be severely degraded in urban canyons due to the non-line-of-sight (NLOS) signals and multipath effects. Therefore, to achieve a high-precision and robust integrated system, real-time fault detection and localization algorithms are needed to ensure integrity. Currently, the residual chi-square test is used for fault detection in the positioning domain, but it has poor sensitivity when faults disappear. Three-dimensional (3D) light detection and ranging (LiDAR) has good positioning performance in complex environments. First, a LiDAR aided real-time fault detection algorithm is proposed. A test statistic is constructed by the mean deviation of the matched targets, and a dynamic threshold is constructed by a sliding window. Second, to solve the problem that measurement noise is estimated by prior modeling with a certain error, a LiDAR aided real-time measurement noise estimation based on adaptive filter localization algorithm is proposed according to the position deviations of matched targets. Finally, the integrity of the integrated system is assessed. The error bound of integrated positioning is innovatively verified with real test data. We conduct two experiments with a vehicle going through a viaduct and a floor hole, which, represent mid and deep urban canyons, respectively. The experimental results show that in terms of fault detection, the fault could be detected in mid urban canyons and the response time of fault disappearance is reduced by 70.24% in deep urban canyons. Thus, the poor sensitivity of the residual chi-square test for fault disappearance is improved. In terms of localization, the proposed algorithm is compared with the optimal fading factor adaptive filter (OFFAF) and the extended Kalman filter (EKF). The proposed algorithm is the most effective, and the Root Mean Square Error (RMSE) in the east and north is reduced by 12.98% and 35.1% in deep urban canyons. Regarding integrity assessment, the error bound can overbound the positioning errors in deep urban canyons relative to the EKF and the mean value of the error bounds is reduced. Numéro de notice : A2022-769 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : 10.3390/rs14184641 Date de publication en ligne : 16/09/2022 En ligne : https://doi.org/10.3390/rs14184641 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101795
in Remote sensing > vol 14 n° 18 (September-2 2022) . - n° 4641[article]Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging / Bo Li in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
[article]
Titre : Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging Type de document : Article/Communication Auteurs : Bo Li, Auteur ; Xiangming Xu, Auteur ; Li Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 161 -1 72 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] couvert végétal
[Termes IGN] hauteur de la végétation
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] image RVB
[Termes IGN] indice de végétation
[Termes IGN] pomme de terre
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] rendement agricoleRésumé : (auteur) Rapid and accurate biomass and yield estimation facilitates efficient plant phenotyping and site-specific crop management. A low altitude unmanned aerial vehicle (UAV) was used to acquire RGB and hyperspectral imaging data for a potato crop canopy at two growth stages to estimate the above-ground biomass and predict crop yield. Field experiments included six cultivars and multiple treatments of nitrogen, potassium, and mixed compound fertilisers. Crop height was estimated using the difference between digital surface model and digital elevation models derived from RGB imagery. Combining with two narrow-band vegetation indices selected by the RReliefF feature selection algorithm. Random Forest regression models demonstrated high prediction accuracy for both fresh and dry above-ground biomass, with a coefficient of determination (r2) > 0.90. Crop yield was predicted using four narrow-band vegetation indices and crop height (r2 = 0.63) with imagery data obtained 90 days after planting. A Partial Least Squares regression model based on the full wavelength spectra demonstrated improved yield prediction (r2 = 0.81). This study demonstrated the merits of UAV-based RGB and hyperspectral imaging for estimating the above-ground biomass and yield of potato crops, which can be used to assist in site-specific crop management. Numéro de notice : A2020-125 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.013 Date de publication en ligne : 28/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.013 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94750
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 161 -1 72[article]Predicting tree diameter using allometry described by non-parametric locally-estimated copulas from tree dimensions derived from airborne laser scanning / Qing Xu in Forest ecology and management, vol 434 (28 February 2019)
[article]
Titre : Predicting tree diameter using allometry described by non-parametric locally-estimated copulas from tree dimensions derived from airborne laser scanning Type de document : Article/Communication Auteurs : Qing Xu, Auteur ; Bo Li, Auteur ; Matti Maltamo, Auteur ; Timo Tokola, Auteur ; Zhengyang Hou, Auteur Année de publication : 2019 Article en page(s) : pp 205 - 212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] allométrie
[Termes IGN] analyse comparative
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] hauteur des arbres
[Termes IGN] houppier
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] méthode des moindres carrés
[Termes IGN] télédétection par lidar
[Termes IGN] théorie des probabilitésRésumé : (auteur) Biomass inventories that employ airborne laser scanning (ALS) require models that can predict tree diameter at breast height (DBH) from ALS-derived tree dimensions, as ALS can usually not directly measure DBH due to scanning angle, inadequate point density and canopy obstruction. Although some work has been done in using correlation as a measure of dependence to describe the linear relationship between variable means, none has investigated the copula-based measure of dependence for the prediction of DBH from ALS-derived height and crown diameter. Following the application of a locally-estimated copula method to 79 sample plots in eastern Finland, we compared the performance of the copula method with a baseline local regression (LOESS) model and an ordinary least squares (OLS) model. We found that the copula method outperformed the OLS model by decreasing 30% of the root-mean-squared error (RMSE). The copula method performed slightly better than the LOESS model for the original sample, but the results of the bootstrap samples showed that the variance in RMSE was sixteen times lower in the copula method than the LOESS model, suggesting that the copula had a more consistent and robust model performance across the 10,000 bootstrap samples. Moreover, while the LOESS model only predicts the conditional mean of the response variable, the copula method can also predict median and other quantiles. Numéro de notice : A2019 - 012 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.foreco.2018.12.020 Date de publication en ligne : 19/12/2018 En ligne : https://doi.org/10.1016/j.foreco.2018.12.020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91615
in Forest ecology and management > vol 434 (28 February 2019) . - pp 205 - 212[article]