Détail de l'auteur
Auteur Nanjun He |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Remote sensing scene classification using multilayer stacked covariance pooling / Nanjun He in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Remote sensing scene classification using multilayer stacked covariance pooling Type de document : Article/Communication Auteurs : Nanjun He, Auteur ; Leyuan Fang, Auteur ; Shutao Li, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 6899 - 6910 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] matrice de covariance
[Termes IGN] représentation cartographique
[Termes IGN] scèneRésumé : (auteur) This paper proposes a new method, called multilayer stacked covariance pooling (MSCP), for remote sensing scene classification. The innovative contribution of the proposed method is that it is able to naturally combine multilayer feature maps, obtained by pretrained convolutional neural network (CNN) models. Specifically, the proposed MSCP-based classification framework consists of the following three steps. First, a pretrained CNN model is used to extract multilayer feature maps. Then, the feature maps are stacked together, and a covariance matrix is calculated for the stacked features. Each entry of the resulting covariance matrix stands for the covariance of two different feature maps, which provides a natural and innovative way to exploit the complementary information provided by feature maps coming from different layers. Finally, the extracted covariance matrices are used as features for classification by a support vector machine. The experimental results, conducted on three challenging data sets, demonstrate that the proposed MSCP method can not only consistently outperform the corresponding single-layer model but also achieve better classification performance than other pretrained CNN-based scene classification methods. Numéro de notice : A2018-552 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2845668 Date de publication en ligne : 09/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2845668 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91640
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 6899 - 6910[article]