Détail de l'auteur
Auteur Yisok Oh |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Polarimetric radar vegetation index for biomass estimation in desert fringe ecosystems / Jisung Geba Chang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Polarimetric radar vegetation index for biomass estimation in desert fringe ecosystems Type de document : Article/Communication Auteurs : Jisung Geba Chang, Auteur ; Maxim Shoshany, Auteur ; Yisok Oh, Auteur Année de publication : 2018 Article en page(s) : pp 7102 - 7108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] allométrie
[Termes IGN] bande C
[Termes IGN] bande L
[Termes IGN] bassin méditerranéen
[Termes IGN] biomasse
[Termes IGN] carte de la végétation
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] données de terrain
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] polarimétrie radar
[Termes IGN] zone aride
[Termes IGN] zone semi-arideRésumé : (auteur) Biomass estimation of eastern Mediterranean shrublands was investigated using PALSAR full- and dual-polarization L-band and Sentinel-1 dual-polarization C-band data. First, we conducted an empirical assessment of single and multiple regressions between polarized backscattering coefficients and shrubland biomass distribution along the climatic gradient between semiarid and arid regions. We then found that the PALSAR L-band HV-polarized backscattering coefficient has higher biomass information content than Sentinel-1 C-band data. Based on a theoretical volume scattering model and a semiempirical model, we propose a new polarimetric radar vegetation index (PRVI) that utilizes the degree of polarization and the cross-polarized backscattering coefficient. The relationship between the new index and the biomass was assessed with reference to normalized difference vegetation index-based biomass estimates calculated using Landsat imagery. The PRVI was found to have higher correlation with biomass compared with other radar polarization parameters, in general, and an existing radar vegetation index (RVI), in particular. Assessment of PRVI-based biomass predictions compared with allometric data extracted from air photographs, Lidar, and field data for 67 sites across the desert fringe zone indicated moderate performance with an RMSE of 0.329 kg/m 2 , while an RVI-based biomass estimation had an RMSE of 0.439 kg/m². Numéro de notice : A2018-553 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2848285 Date de publication en ligne : 03/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2848285 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91659
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 7102 - 7108[article]