Détail de l'auteur
Auteur Er Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automatic building rooftop extraction from aerial images via hierarchical RGB-D priors / Shibiao Xu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Automatic building rooftop extraction from aerial images via hierarchical RGB-D priors Type de document : Article/Communication Auteurs : Shibiao Xu, Auteur ; Xingjia Pan, Auteur ; Er Li, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 7369 - 7387 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] détection du bâti
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] itération
[Termes IGN] scène urbaine
[Termes IGN] segmentation d'image
[Termes IGN] segmentation hiérarchique
[Termes IGN] toit
[Termes IGN] zone saillante 3DRésumé : (auteur) Accurate building rooftop extraction from high-resolution aerial images is of crucial importance in a wide range of applications. Owing to the varying appearance and large-scale range of scene objects, especially for building rooftops in different scales and heights, single-scale or individual prior-based extraction technique is insufficient in pursuing efficient, generic, and accurate extraction results. The trend toward integrating multiscale or several cue techniques appears to be the best way; thus, such integration is the focus of this paper. We first propose a novel salient rooftop detector integrating four correlative RGB-D priors (depth cue, uniqueness prior, shape prior, and transition surface prior) for improved rooftop extraction to address the preceding complex issues mentioned. Then, these correlative cues are computed from image layers created by our multilevel segmentation and further fused into the state-of-the-art high-order conditional random field (CRF) framework to locate the rooftop. Finally, an iterative optimization strategy is applied for high-quality solving, which can robustly handle varying appearance of building rooftops. Performance evaluations in the SZTAKI-INRIA benchmark data sets show that our method outperforms the traditional color-based algorithm and the original high-order CRF algorithm and its variants. The proposed algorithm is also evaluated and found to produce consistently satisfactory results for various large-scale, real-world data sets. Numéro de notice : A2018-558 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2850972 Date de publication en ligne : 26/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2850972 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91664
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 7369 - 7387[article]