Détail de l'auteur
Auteur Armand Drugeon |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : COVID-19 geoviz for spatio-temporal structures detection Type de document : Article/Communication Auteurs : Jacques Gautier , Auteur ; María-Jesús Lobo , Auteur ; Benjamin Fau, Auteur ; Armand Drugeon, Auteur ; Sidonie Christophe , Auteur ; Guillaume Touya , Auteur Editeur : International Cartographic Association ICA - Association cartographique internationale ACI Année de publication : 2021 Collection : Proceedings of the ICA num. 4 Projets : 1-Pas de projet / Conférence : ICC 2021, 30th ICA international cartographic conference 14/12/2021 18/12/2021 Florence Italie Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse géovisuelle
[Termes IGN] analyse spatio-temporelle
[Termes IGN] cube espace-temps
[Termes IGN] données spatiotemporelles
[Termes IGN] exploration de données géographiques
[Termes IGN] maladie virale
[Vedettes matières IGN] GéovisualisationMots-clés libres : Grow Ring Map visualization Résumé : (auteur) The spread of COVID-19 has motivated a wide interest in visualization tools to represent the pandemic’s spatio-temporal evolution. This tools usually rely on dashboard environments which depict COVID-19 data as temporal series related to different indicators (number of cases, deaths) calculated for several spatial entities at different scales (countries or regions). In these tools, diagrams (line charts or histograms) display the temporal component of data, and 2D cartographic representations display the spatial distribution of data at one moment in time. In this paper, we aim at proposing novel visualization designs in order to help medical experts to detect spatio-temporal structures such as clusters of cases and spatial axes of propagation of the epidemic, through a visual analysis of detailed COVID-19 event data. In this context, we investigate and revisit two visualizations, one based on the Growth Ring Map technique and the other based on the space-time cube applied on a spatial hexagonal grid. We assess the potential of these visualizations for the visual analysis of COVID-19 event data, through two proofs of concept using synthetic cases data and web-based prototypes. The Grow Ring Map visualization appears to facilitate the identification of clusters and propagation axes in the cases distribution, while the space-time cube appears to be suited for the identification of local temporal trends. Numéro de notice : C2021-046 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/ica-proc-4-37-2021 Date de publication en ligne : 03/12/2021 En ligne : https://doi.org/10.5194/ica-proc-4-37-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99398