Détail de l'auteur
Auteur Xiaojing Bai |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Assessment of different vegetation parameters for parameterizing the coupled water cloud model and advanced integral equation model for soil moisture retrieval using time series Sentinel-1A data / Long Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)
[article]
Titre : Assessment of different vegetation parameters for parameterizing the coupled water cloud model and advanced integral equation model for soil moisture retrieval using time series Sentinel-1A data Type de document : Article/Communication Auteurs : Long Wang, Auteur ; Binbin He, Auteur ; Xiaojing Bai, Auteur ; Minfeng Xing, Auteur Année de publication : 2019 Article en page(s) : pp 43 - 54 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Enhanced vegetation index
[Termes IGN] étalonnage de modèle
[Termes IGN] humidité du sol
[Termes IGN] image Sentinel-SAR
[Termes IGN] image Terra-MODIS
[Termes IGN] indice foliaire
[Termes IGN] Iowa (Etats-Unis)
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de rétrodiffusion
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelleRésumé : (auteur) Soil moisture is an important state variable of the land surface ecosystem. In this paper, the water cloud model (WCM) and advanced integral equation model (AIEM) are coupled to retrieve soil moisture using time series Sentinel-1A data and moderate resolution imaging spectroradiometer (MODIS) data. Normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR), are cross-combined to initialize the calibrated model. The calibration results show the following: (1) Vegetation parameters have a great influence on model calibration; and (2) The combination of (NDVI, LAI) is recommended to calibrate the coupled model, the RMSE, R2 is 0.739 dB, and 0.716 for the observed and estimated backscattering coefficients. The soil moisture inversion results show that: (1) the accuracy of model calibration and soil moisture inversion are inconsistent; and (2) The normalized vegetation parameters, such as NDVI, EVI and FPAR, are suitable for WCM to describe vegetation characteristics, and NDVI is the optimum. When V2 is the NDVI, the average bias, MAE, RMSE, ubRMSE and R2 are –0.007 m3/m3, 0.074 m3/m3, 0.087 m³/m³, 0.087 m3/m3 and 0.750, respectively. Numéro de notice : A2019-029 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.1.43 Date de publication en ligne : 01/01/2019 En ligne : https://doi.org/10.14358/PERS.85.1.43 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91965
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 1 (January 2019) . - pp 43 - 54[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019011 SL Revue Centre de documentation Revues en salle Disponible