Détail de l'auteur
Auteur Xinghan Chen |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Evaluating the impact of higher-order ionospheric corrections on multi-GNSS ultra-rapid orbit determination / Xinghan Chen in Journal of geodesy, vol 93 n° 9 (September 2019)
[article]
Titre : Evaluating the impact of higher-order ionospheric corrections on multi-GNSS ultra-rapid orbit determination Type de document : Article/Communication Auteurs : Xinghan Chen, Auteur ; Maorong Ge, Auteur ; Haroldo Antonio Marques, Auteur ; Harald Schuh, Auteur Année de publication : 2019 Article en page(s) : pp 1347 - 1365 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] correction ionosphérique
[Termes IGN] orbitographie par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard ionosphèrique
[Termes IGN] temps réelRésumé : (Auteur) The correction of higher-order ionospheric (HOI) delays remaining in the dual-frequency ionosphere-free combined observations is suggested after the confirmation of its impact on precise Global Navigation Satellite System (GNSS) data processing. However, in the precise orbit determination (POD) for generating ultra-rapid orbits, the higher-order corrections are not always considered most likely because a RT ionospheric model needed for calculating the higher-order corrections is hardly available or the HOI impact is believed rather small compared to the accuracy of the predicted orbit. With the increasing requirement on the positioning performances from various applications, providing more accurate and reliable ultra-rapid orbits becomes an essential task of the real-time GNSS precise positioning services. In this contribution, the temporal–spatial characteristics of HOI effects on GNSS observables are investigated thoroughly using data collected from International GNSS Service (IGS) global ground stations and fluctuations of the higher-order delays up to several centimeters are detected during periods of high ionospheric activity. Hereafter, we evaluate the HOI effects on the multi-GNSS POD based on a network with globally distributed IGS stations. Results show that owing to the applied HOI corrections, the agreement of overlapping orbits can be improved significantly for all satellites and especially in radial direction. The three-dimensional RMS values of the overlapping differences are reduced from 1.6, 2.0, 4.6 and 1.7 to 1.0, 1.1, 3.4, and 1.5 cm for GPS, GALILEO, BDS, and GLONASS, respectively. Furthermore, the orbit improvement is also confirmed by the satellite laser ranging (SLR) observations over a 2-month time period where the STD of SLR residuals is reduced by HOI corrections from 6.4 to 5.3 cm for the BDS-IGSO satellites. Numéro de notice : A2019-504 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-019-01249-7 Date de publication en ligne : 23/03/2019 En ligne : https://doi.org/10.1007/s00190-019-01249-7 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93786
in Journal of geodesy > vol 93 n° 9 (September 2019) . - pp 1347 - 1365[article]Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning / Xingxing Li in Journal of geodesy, vol 93 n° 1 (January 2019)
[article]
Titre : Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning Type de document : Article/Communication Auteurs : Xingxing Li, Auteur ; Xinghan Chen, Auteur ; Maorong Ge, Auteur ; Harald Schuh, Auteur Année de publication : 2019 Article en page(s) : pp 45 - 64 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] délai d'obtention de la première position
[Termes IGN] orbite précise
[Termes IGN] orbitographie
[Termes IGN] positionnement par BeiDou
[Termes IGN] positionnement par Galileo
[Termes IGN] positionnement par GLONASS
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] Quasi-Zenith Satellite System
[Termes IGN] temps réelRésumé : (auteur) Currently, with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSS), the real-time positioning and navigation are undergoing dramatic changes with potential for a better performance. To provide more precise and reliable ultra-rapid orbits is critical for multi-GNSS real-time positioning, especially for the three merging constellations Beidou, Galileo and QZSS which are still under construction. In this contribution, we present a five-system precise orbit determination (POD) strategy to fully exploit the GPS + GLONASS + BDS + Galileo + QZSS observations from CDDIS + IGN + BKG archives for the realization of hourly five-constellation ultra-rapid orbit update. After adopting the optimized 2-day POD solution (updated every hour), the predicted orbit accuracy can be obviously improved for all the five satellite systems in comparison to the conventional 1-day POD solution (updated every 3 h). The orbit accuracy for the BDS IGSO satellites can be improved by about 80, 45 and 50% in the radial, cross and along directions, respectively, while the corresponding accuracy improvement for the BDS MEO satellites reaches about 50, 20 and 50% in the three directions, respectively. Furthermore, the multi-GNSS real-time precise point positioning (PPP) ambiguity resolution has been performed by using the improved precise satellite orbits. Numerous results indicate that combined GPS + BDS + GLONASS + Galileo (GCRE) kinematic PPP ambiguity resolution (AR) solutions can achieve the shortest time to first fix (TTFF) and highest positioning accuracy in all coordinate components. With the addition of the BDS, GLONASS and Galileo observations to the GPS-only processing, the GCRE PPP AR solution achieves the shortest average TTFF of 11 min with 7∘ cutoff elevation, while the TTFF of GPS-only, GR, GE and GC PPP AR solution is 28, 15, 20 and 17 min, respectively. As the cutoff elevation increases, the reliability and accuracy of GPS-only PPP AR solutions decrease dramatically, but there is no evident decrease for the accuracy of GCRE fixed solutions which can still achieve an accuracy of a few centimeters in the east and north components. Numéro de notice : A2019-032 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-018-1138-y Date de publication en ligne : 27/03/2018 En ligne : https://doi.org/10.1007/s00190-018-1138-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91969
in Journal of geodesy > vol 93 n° 1 (January 2019) . - pp 45 - 64[article]