Détail de l'auteur
Auteur Xin Wang |
Documents disponibles écrits par cet auteur (7)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Extracting built-up land area of airports in China using Sentinel-2 imagery through deep learning / Fanxuan Zeng in Geocarto international, vol 37 n° 25 ([01/12/2022])
[article]
Titre : Extracting built-up land area of airports in China using Sentinel-2 imagery through deep learning Type de document : Article/Communication Auteurs : Fanxuan Zeng, Auteur ; Xin Wang, Auteur ; Mengqi Zha, Auteur Année de publication : 2022 Article en page(s) : pp 7753 - 7773 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aéroport
[Termes IGN] apprentissage profond
[Termes IGN] architecture de réseau
[Termes IGN] Chine
[Termes IGN] détection du bâti
[Termes IGN] image Sentinel-MSIRésumé : (auteur) In China, airports have a profound impact on people’s lives, and understanding their dimensions has great significance for research and development. However, few existing airport databases contain such details, which can be reflected indirectly by the built-up land in the airport. In this study, a deep learning-based method was used for extraction of built-up land of airports in China using Sentinel-2 imagery and for further estimating their area. Here, a benchmark generation method is introduced by fusing two reference maps and cropping images into patches. Following this, a series of experiments were conducted to evaluate the network architectures and select the positive impact bands in Sentinel-2 imagery. A well-trained model was used to extract the built-up land for China airports, and the relationship between China airports’ built-up land and the carrying capacity of air transportation was further analysed. Results show that ResUNet-a outperformed U-Net, ResUNet, and SegNet, and the B2, B4, B6, B11, and B12 bands of Sentinel-2 had a positive impact on built-up land extraction. A well-trained model with an overall accuracy of 0.9423 and an F1 score of 0.9041 and 434 China airports’ built-up land was extracted. The four most developed airports are located in Beijing, Shanghai, and Guangzhou, which matches China’s political and economic development. The area of built-up land influenced the passenger throughput and aircraft movements. The total area influenced the cargo throughput, and we found a certain correlation among the built-up land, carrying capacity, and nighttime light. Numéro de notice : A2022-929 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1983034 Date de publication en ligne : 01/10/2021 En ligne : https://doi.org/10.1080/10106049.2021.1983034 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102662
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7753 - 7773[article]Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers / Seyyed Mohammadreza Rahimi in Geoinformatica, vol 26 n° 1 (January 2022)
[article]
Titre : Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers Type de document : Article/Communication Auteurs : Seyyed Mohammadreza Rahimi, Auteur ; Behrouz Far, Auteur ; Xin Wang, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] comportement
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] covariance
[Termes IGN] données spatiotemporelles
[Termes IGN] historique des données
[Termes IGN] interface web
[Termes IGN] mobilité territoriale
[Termes IGN] prise en compte du contexte
[Termes IGN] réseau social géodépendant
[Termes IGN] service fondé sur la position
[Termes IGN] système de recommandationRésumé : (auteur) Location recommendation methods suggest unvisited locations to their users. Many existing location recommendation methods focus on the spatial, social and temporal aspects of human movements. However, contextual information is also invaluable to location recommendation methods and has the great potential for explaining what triggers users to show different behaviors. CLR learns the response of the users to contextual variables based on their own history and the history of similar behaving users. In this paper, we propose a contextual location recommendation method named Contextual Location Recommendation (CLR) that learns the intention and spatial responses of users to various contextual triggers using the historical check-in and contextual information. CLR starts with a co-variance analysis to reduce dimensionality of the check-in data and then uses an optimized version of the random walk with restart to extract hidden user responses to contextual triggers. A tensor factorization is used to build a latent-factor model to predict the user’s intention response with the given set of contextual triggers. Based on the intention response of the user, a contextual spatial component identifies a set of matching locations accessible to the user by estimating the probability distribution of the location of the user and the popularity probability of locations under the contextual settings. Experimental results on three real-world datasets show that CLR improves the recommendation precision by 35% compared to the best-performing baseline recommendation method. Numéro de notice : A2022-203 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00437-y Date de publication en ligne : 02/06/2021 En ligne : https://doi.org/10.1007/s10707-021-00437-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100008
in Geoinformatica > vol 26 n° 1 (January 2022) . - pp 1 - 28[article]Hidden Markov map matching based on trajectory segmentation with heading homogeneity / Ge Cui in Geoinformatica, vol 25 n° 1 (January 2021)
[article]
Titre : Hidden Markov map matching based on trajectory segmentation with heading homogeneity Type de document : Article/Communication Auteurs : Ge Cui, Auteur ; Wentao Bian, Auteur ; Xin Wang, Auteur Année de publication : 2021 Article en page(s) : pp 179 - 206 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] appariement de cartes
[Termes IGN] appariement de données localisées
[Termes IGN] modèle de Markov caché
[Termes IGN] réseau routier
[Termes IGN] segmentation
[Termes IGN] trajectographie par GPS
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Map matching is to locate GPS trajectories onto the road networks, which is an important preprocessing step for many applications based on GPS trajectories. Currently, hidden Markov model is one of the most widely used methods for map matching. However, both effectiveness and efficiency of conventional map matching methods based on hidden Markov model will decline in the dense road network, as the number of candidate road segments enormously increases around GPS point. To overcome the deficiency, this paper proposes a segment-based hidden Markov model for map matching. The proposed method first partitions GPS trajectory into several GPS sub-trajectories based on the heading homogeneity and length constraint; next, the candidate road segment sequences are searched out for each GPS sub-trajectory; last, GPS sub-trajectories and road segment sequences are matched in hidden Markov model, and the road segment sequences with the maximum probability is identified. A case study is conducted on a real GPS trajectory dataset, and the experiment result shows that the proposed method improves the effectiveness and efficiency of the conventional HMM map matching method. Numéro de notice : A2021-094 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00429-4 Date de publication en ligne : 02/01/2021 En ligne : https://doi.org/10.1007/s10707-020-00429-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96934
in Geoinformatica > vol 25 n° 1 (January 2021) . - pp 179 - 206[article]
Titre : Robust and fast global image orientation Type de document : Thèse/HDR Auteurs : Xin Wang, Auteur ; Christian Heipke, Directeur de thèse Editeur : Munich : Bayerische Akademie der Wissenschaften Année de publication : 2021 Collection : DGK - C, ISSN 0065-5325 num. 871 Importance : 141 p. Note générale : bibliographie
Diese Arbeit ist gleichzeitig veröffentlicht in: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover ISSN 0174-1454, Nr. 373, Hannover 2021Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] appariement d'images
[Termes IGN] appariement dense
[Termes IGN] chaîne de traitement
[Termes IGN] estimation de pose
[Termes IGN] méthode robuste
[Termes IGN] orientation d'image
[Termes IGN] orientation relative
[Termes IGN] rotation
[Termes IGN] structure-from-motion
[Termes IGN] translation
[Termes IGN] valeur aberranteRésumé : (auteur) The estimation of image orientation (also called pose) has always played a crucial role in the field of photogrammetry since it is a fundamental prerequisite for the subsequent works of multi-view dense matching, generating DEM and DSM, etc. In the community of computer vision, the task is also well known as Structure-from-Motion (SfM), which reveals that image pose, while positions of object points are determined interdependently. Despite a lot of efforts over the last decades, it has recently gained the photogrammetrists’ interests again due to the fast-growing number of different resources of images. New challenges are posed for accurately and efficiently orienting various image datasets (e.g., unordered datasets with a large number of images, or images compromised of critical stereo pairs). In this thesis, the relevant ambition is to develop a new fast and robust method for the estimation of image orientation which is capable of coping with different types of datasets. To achieve this goal, the two most time-consuming steps of image orientation are in particular taken care of: (a) image matching and (b) the estimation process. To accelerate the image matching process, a new method employing a random k-d forest is proposed to quickly obtain pairs of overlapping images from an unordered image set. After that, image matching and the estimation of relative orientation parameters are performed only for pairs found to be very likely overlapping. On the other hand, to estimate the image poses in a time efficient manner, a global image orientation strategy is advocated. Its basic idea is to first simultaneously solve all available images’ poses, before a final bundle adjustment is carried out once for refinement. The conventional two-step global approach is pursued in this work, separating the determination of rotation matrices and translation parameters; the former is solved by an existing popular method of Chatterjee and Govindu [2013], and the latter are estimated globally using a newly developed method: translation estimation integrating both the relative translations and tie points. Tie points within triplets are adopted to firstly calculate global unified scale factors for each available pairwise relative translation. Then, analogous to rotation estimation, translations are determined by performing an averaging operation on the scaled relative translations. In order to improve the robustness of the solution, efforts in this thesis are also focused on coping with outliers in the relative orientations (ROs), which global image orientation approaches are particularly sensitive to. A general method based on triplet compatibility with respect to loop closure errors of relative rotations and translations is presented for detecting blunders in relative orientations. Although this procedure eliminated many gross errors in the input ROs, it typically cannot sort out blunders which are caused by repetitive structures and critical configurations, such as inappropriate baselines (very short baseline or baselines parallel to the viewing direction). Therefore, another new method is proposed to eliminate wrong ROs which have resulted from repetitive structures and very short baselines. Two corresponding criteria that indicate the quality of ROs are introduced. Repetitive structure is detected based on counts of conjugate points of the various image pairs, while very short baselines are found by inspecting the intersection angles of corresponding image rays. By analyzing these two criteria, incorrect ROs are detected and eliminated. As correct ROs of image pairs with a wider baseline nearly parallel to both viewing directions can be valuable, a method to identify and keep these ROs is also a part of this research. The validation and evaluation of the proposed method are thoroughly conducted on various benchmarks including ordered and unordered sets of images, images with repetitive structures and inappropriate baselines, etc. In particular, robustness is investigated by demonstrating the efficacy of the corresponding RO outlier detection methods. The performance and time efficiency of determining image orientation are evaluated and compared with several state-of-the-art global image orientation approaches. In summary, based on the experimental results, the developed methods demonstrateto be able to accomplish the image orientation taskfast and robustlyon different kinds of datasets. Numéro de notice : 17672 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD dissertation : Fachrichtung Geodäsie und Geoinformatik : Hanovre : 2021 En ligne : https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-871.pdf Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97997 Behavior-based location recommendation on location-based social networks / Seyyed Mohammadreza Rahimi in Geoinformatica, vol 24 n° 3 (July 2020)
[article]
Titre : Behavior-based location recommendation on location-based social networks Type de document : Article/Communication Auteurs : Seyyed Mohammadreza Rahimi, Auteur ; Behrouz Far, Auteur ; Xin Wang, Auteur Année de publication : 2020 Article en page(s) : pp 477 – 504 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données localisées des bénévoles
[Termes IGN] interface web
[Termes IGN] modèle conceptuel de données localisées
[Termes IGN] réseau social géodépendant
[Termes IGN] système de recommandationRésumé : (auteur) Location recommendation methods on location-based social networks (LBSN) discover the locational preference of users along with their spatial movement patterns from users’ check-ins and provide users with recommendations of unvisited places. The growing popularity of LBSNs and abundance of shared location information has made location recommendation an active research area in the recent years. However, the existing methods suffer from one or more deficiencies such as data sparsity, cold-start users, ignoring users’ specific spatial and temporal behaviors, not utilizing the shared behaviors of the users. In this paper, we propose a novel location recommendation method, namely Behavior-based Location Recommendation (BLR). BLR recommends a location to a user based on the users’ repetitive behaviors and behaviors of similar users. Additionally, to better integrate the spatial information, BLR has two spatial components, a user-based spatial component to find the spatial preferences of the user, and a behavior-based spatial component to find locations of interest for different behaviors. Experimental studies on three real-world datasets show that BLR produces better location recommendations and can effectively address data sparsity and cold-start problems. Numéro de notice : A2020-370 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-019-00360-3 Date de publication en ligne : 25/05/2019 En ligne : https://doi.org/10.1007/s10707-019-00360-3 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95265
in Geoinformatica > vol 24 n° 3 (July 2020) . - pp 477 – 504[article]Robust structure from motion based on relative rotations and tie points / Xin Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 5 (May 2019)PermalinkStructure from motion for ordered and unordered image sets based on random k-d forests and global pose estimation / Xin Wang in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)Permalink