Détail de l'auteur
Auteur Jian Dong |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automated extraction of 3D vector topographic feature line from terrain point cloud / Wei Zhou in Geocarto international, vol 33 n° 10 (October 2018)
[article]
Titre : Automated extraction of 3D vector topographic feature line from terrain point cloud Type de document : Article/Communication Auteurs : Wei Zhou, Auteur ; Rencan Peng, Auteur ; Jian Dong, Auteur ; Tao Wang, Auteur Année de publication : 2018 Article en page(s) : pp 1036 - 1047 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] arbre aléatoire minimum
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] ligne caractéristique
[Termes IGN] lissage de données
[Termes IGN] modèle numérique de terrain
[Termes IGN] objet géographique linéaire
[Termes IGN] repère de Laplace
[Termes IGN] segmentation en régions
[Termes IGN] semis de pointsRésumé : (auteur) This paper presents an automated topographic feature lines detection method that directly extracts 3D vector topographic feature lines from terrain point cloud. First, signed surface variation (SSV) is introduced to extract the potential feature points. Secondly, the potential feature points are segmented to different clusters by combining region growing segmentation and conditional Euclidean clustering. In order to extract feature points, the potential feature points in each cluster are iteratively thinned using a HC-Laplacian smoothing method with SSV weighted taken into account. Besides, SSV-based and elevation-based simple rules are added for accelerating this thinning process. Finally, the feature lines are obtained by constructing the minimum spanning tree of the extracted feature points. By comparing with manually digitized reference lines, the correctness and the completeness of extracted results are about 80% or even higher, which are much higher than those extracted by D8 algorithm. Numéro de notice : A2019-046 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2017.1325521 Date de publication en ligne : 18/05/2017 En ligne : https://doi.org/10.1080/10106049.2017.1325521 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92064
in Geocarto international > vol 33 n° 10 (October 2018) . - pp 1036 - 1047[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2018041 RAB Revue Centre de documentation En réserve L003 Disponible