Détail de l'auteur
Auteur Avideh Zahkor |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : Tree detection in aerial LIDAR and image data Type de document : Article/Communication Auteurs : John Secord, Auteur ; Avideh Zahkor, Auteur Editeur : New York [Etats-Unis] : IEEE Signal Processing Society Année de publication : 2006 Conférence : ICIP 2006, 13th IEEE International Conference on Image Processing 08/10/2006 11/10/2006 Atlanta Géorgie - Etats-Unis Proceedings IEEE Importance : 35 p. Format : 21 x 30 cm Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage dirigé
[Termes IGN] classification dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image aérienne
[Termes IGN] modélisation 3D
[Termes IGN] segmentationRésumé : (auteur) In this paper, we present an approach to detecting trees in registered aerial image and range data obtained via LiDAR. The motivation for this problem comes from automated city modeling, in which such data is used to generate textured 3-D models. Representing the trees in these models is problematic because the data is usually too sparsely sampled in tree regions to create an accurate 3-D model of the trees. Furthermore, including the tree data points interferes with the polygonization step of the building roof top models. Therefore, it is advantageous to detect and remove points that represent trees in both LiDAR and aerial imagery. In this paper, we propose a two-step method for tree detection consisting of segmentation followed by classification. The segmentation is done using a simple region-growing algorithm using weighted features from aerial image and LiDAR, such as height, texture map, height variation, and normal vector estimates. The weights for the features are determined using a learning method on random walks. The classification is done using weighted support vector machines (SVM), allowing us to control the misclassification rate. The overall problem is formulated as a binary detection problem, and receiver operating characteristic curves are shown to validate our approach. Numéro de notice : C2006-024 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Communication DOI : 10.1109/ICIP.2006.312850 En ligne : https://doi.org/10.1109/ICIP.2006.312850 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90963