Détail de l'auteur
Auteur Jiang Juqin |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level / Jiang Juqin in Cartography and Geographic Information Science, vol 46 n° 3 (May 2019)
[article]
Titre : Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level Type de document : Article/Communication Auteurs : Jiang Juqin, Auteur ; Zhenlong Li, Auteur ; Xinyue Ye, Auteur Année de publication : 2019 Article en page(s) : pp 228 - 242 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] agrégation spatiale
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données démographiques
[Termes IGN] données massives
[Termes IGN] données socio-économiques
[Termes IGN] erreur systématique
[Termes IGN] Etats-Unis
[Termes IGN] géobalise
[Termes IGN] régression géographiquement pondérée
[Termes IGN] TwitterRésumé : (Auteur) Massive social media data produced from microblog platforms provide a new data source for studying human dynamics at an unprecedented scale. Meanwhile, population bias in geotagged Twitter users is widely recognized. Understanding the demographic and socioeconomic biases of Twitter users is critical for making reliable inferences on the attitudes and behaviors of the population. However, the existing global models cannot capture the regional variations of the demographic and socioeconomic biases. To bridge the gap, we modeled the relationships between different demographic/socioeconomic factors and geotagged Twitter users for the whole contiguous United States, aiming to understand how the demographic and socioeconomic factors relate to the number of Twitter users at county level. To effectively identify the local Twitter users for each county of the United States, we integrate three commonly used methods and develop a query approach in a high-performance computing environment. The results demonstrate that we can not only identify how the demographic and socioeconomic factors relate to the number of Twitter users, but can also measure and map how the influence of these factors vary across counties. Numéro de notice : A2019-093 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2018.1434834 Date de publication en ligne : 09/02/2018 En ligne : https://doi.org/10.1080/15230406.2018.1434834 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92338
in Cartography and Geographic Information Science > vol 46 n° 3 (May 2019) . - pp 228 - 242[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2019031 RAB Revue Centre de documentation En réserve L003 Disponible