Détail de l'auteur
Auteur Georgios Thanellas |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatially sensitive statistical shape analysis for pedestrian recognition from LIDAR data / Michalis A. Savelonas in Computer Vision and image understanding, vol 171 (June 2018)
[article]
Titre : Spatially sensitive statistical shape analysis for pedestrian recognition from LIDAR data Type de document : Article/Communication Auteurs : Michalis A. Savelonas, Auteur ; Ioannis Pratikakis, Auteur ; Theoharis Theoharis, Auteur ; Georgios Thanellas, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 1 - 9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse spatiale
[Termes IGN] classification barycentrique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] codage
[Termes IGN] détection de piéton
[Termes IGN] discrétisation spatiale
[Termes IGN] distribution de Fisher
[Termes IGN] données lidar
[Termes IGN] échantillonnage de données
[Termes IGN] image à basse résolution
[Termes IGN] reconnaissance de formesRésumé : (auteur) Range-based pedestrian recognition is instrumental towards the development of autonomous driving and driving assistance systems. This work introduces encoding methods for pedestrian recognition, based on statistical shape analysis of 3D LIDAR data. The proposed approach has two variants, based on the encoding of local shape descriptors either in a spatially agnostic or spatially sensitive fashion. The latter method derives more detailed cues, by enriching the ‘gross’ information reflected by overall statistics of local shape descriptors, with ‘fine-grained’ information reflected by statistics associated with spatial clusters. Experiments on artificial LIDAR datasets, which include challenging samples, as well as on a large scale dataset of real LIDAR data, lead to the conclusion that both variants of the proposed approach (i) obtain high recognition accuracy, (ii) are robust against low-resolution sampling, (iii) are robust against increasing distance, and (iv) are robust against non-standard shapes and poses. On the other hand, the spatially-sensitive variant is more robust against partial occlusion and bad clustering. Numéro de notice : A2018-586 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cviu.2018.06.001 Date de publication en ligne : 15/06/2018 En ligne : https://www.sciencedirect.com/science/article/pii/S1077314218300766 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92439
in Computer Vision and image understanding > vol 171 (June 2018) . - pp 1 - 9[article]