Détail de l'auteur
Auteur Raffaele Gaetano |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Combining Sentinel-1 and Sentinel-2 Satellite image time series for land cover mapping via a multi-source deep learning architecture / Dino Lenco in ISPRS Journal of photogrammetry and remote sensing, Vol 158 (December 2019)
[article]
Titre : Combining Sentinel-1 and Sentinel-2 Satellite image time series for land cover mapping via a multi-source deep learning architecture Type de document : Article/Communication Auteurs : Dino Lenco, Auteur ; Roberto Interdonato, Auteur ; Raffaele Gaetano, Auteur ; Ho Tong Minh Dinh, Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] Burkina Faso
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] occupation du sol
[Termes IGN] Réunion, île de la
[Termes IGN] série temporelle
[Termes IGN] utilisation du solRésumé : (auteur) The huge amount of data currently produced by modern Earth Observation (EO) missions has allowed for the design of advanced machine learning techniques able to support complex Land Use/Land Cover (LULC) mapping tasks. The Copernicus programme developed by the European Space Agency provides, with missions such as Sentinel-1 (S1) and Sentinel-2 (S2), radar and optical (multi-spectral) imagery, respectively, at 10 m spatial resolution with revisit time around 5 days. Such high temporal resolution allows to collect Satellite Image Time Series (SITS) that support a plethora of Earth surface monitoring tasks. How to effectively combine the complementary information provided by such sensors remains an open problem in the remote sensing field. In this work, we propose a deep learning architecture to combine information coming from S1 and S2 time series, namely TWINNS (TWIn Neural Networks for Sentinel data), able to discover spatial and temporal dependencies in both types of SITS. The proposed architecture is devised to boost the land cover classification task by leveraging two levels of complementarity, i.e., the interplay between radar and optical SITS as well as the synergy between spatial and temporal dependencies. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the Koumbia site in Burkina Faso and Reunion Island, a overseas department of France in the Indian Ocean), demonstrate the significance of our proposal. Numéro de notice : A2019-544 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.016 Date de publication en ligne : 27/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94186
in ISPRS Journal of photogrammetry and remote sensing > Vol 158 (December 2019)[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019123 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019122 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn / Roberto Interdonato in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
[article]
Titre : DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn Type de document : Article/Communication Auteurs : Roberto Interdonato, Auteur ; Dino Ienco, Auteur ; Raffaele Gaetano, Auteur ; Kenji Ose, Auteur Année de publication : 2019 Article en page(s) : pp 91 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification dirigée
[Termes IGN] image à haute résolution
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal convolutif
[Termes IGN] série temporelleRésumé : (Auteur) Nowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable example is represented by the Sentinel-2 mission, which provides images at high spatial resolution (up to 10 m) with high temporal revisit period (every 5 days), which can be organized in Satellite Image Time Series (SITS). While the use of SITS has been proved to be beneficial in the context of Land Use/Land Cover (LULC) map generation, unfortunately, most of machine learning approaches commonly leveraged in remote sensing field fail to take advantage of spatio-temporal dependencies present in such data. Recently, new generation deep learning methods allowed to significantly advance research in this field. These approaches have generally focused on a single type of neural network, i.e., Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), which model different but complementary information: spatial autocorrelation (CNNs) and temporal dependencies (RNNs). In this work, we propose the first deep learning architecture for the analysis of SITS data, namely DuPLO (DUal view Point deep Learning architecture for time series classificatiOn), that combines Convolutional and Recurrent neural networks to exploit their complementarity. Our hypothesis is that, since CNNs and RNNs capture different aspects of the data, a combination of both models would produce a more diverse and complete representation of the information for the underlying land cover classification task. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the Gard site in Mainland France and Reunion Island, a overseas department of France in the Indian Ocean), demonstrate the significance of our proposal. Numéro de notice : A2019-115 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.011 Date de publication en ligne : 24/01/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92441
in ISPRS Journal of photogrammetry and remote sensing > vol 149 (March 2019) . - pp 91 - 104[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt