Détail de l'auteur
Auteur Zhenlong Xiao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Learning high-level features by fusing multi-view representation of MLS point clouds for 3D object recognition in road environments / Zhipeng Luo in ISPRS Journal of photogrammetry and remote sensing, vol 150 (April 2019)
[article]
Titre : Learning high-level features by fusing multi-view representation of MLS point clouds for 3D object recognition in road environments Type de document : Article/Communication Auteurs : Zhipeng Luo, Auteur ; Jonathan Li, Auteur ; Zhenlong Xiao, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 44 - 58 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] jointure spatiale
[Termes IGN] objet 3D
[Termes IGN] reconnaissance d'objets
[Termes IGN] représentation multiple
[Termes IGN] réseau neuronal convolutif
[Termes IGN] semis de pointsRésumé : (Auteur) Most existing 3D object recognition methods still suffer from low descriptiveness and weak robustness although remarkable progress has made in 3D computer vision. The major challenge lies in effectively mining high-level 3D shape features. This paper presents a high-level feature learning framework for 3D object recognition through fusing multiple 2D representations of point clouds. The framework has two key components: (1) three discriminative low-level 3D shape descriptors for obtaining multi-view 2D representation of 3D point clouds. These descriptors preserve both local and global spatial relationships of points from different perspectives and build a bridge between 3D point clouds and 2D Convolutional Neural Networks (CNN). (2) A two-stage fusion network, which consists of a deep feature learning module and two fusion modules, for extracting and fusing high-level features. The proposed method was tested on three datasets, one of which is Sydney Urban Objects dataset and the other two were acquired by a mobile laser scanning (MLS) system along urban roads. The results obtained from comprehensive experiments demonstrated that our method is superior to the state-of-the-art methods in descriptiveness, robustness and efficiency. Our method achieves high recognition rates of 94.6%, 93.1% and 74.9% on the above three datasets, respectively. Numéro de notice : A2019-137 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.024 Date de publication en ligne : 16/02/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.024 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92468
in ISPRS Journal of photogrammetry and remote sensing > vol 150 (April 2019) . - pp 44 - 58[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt