Détail de l'auteur
Auteur Patrick Stotko |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Albedo estimation for real-time 3D reconstruction using RGB-D and IR data / Patrick Stotko in ISPRS Journal of photogrammetry and remote sensing, vol 150 (April 2019)
[article]
Titre : Albedo estimation for real-time 3D reconstruction using RGB-D and IR data Type de document : Article/Communication Auteurs : Patrick Stotko, Auteur ; Michael Weinmann, Auteur ; Reinhard Klein, Auteur Année de publication : 2019 Article en page(s) : pp 213 - 225 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] albedo
[Termes IGN] image infrarouge
[Termes IGN] image RVB
[Termes IGN] longueur d'onde
[Termes IGN] méthode de réduction d'énergie
[Termes IGN] reconstruction 3D
[Termes IGN] réflectance
[Termes IGN] segmentation d'image
[Termes IGN] temps réel
[Termes IGN] texture d'imageRésumé : (Auteur) Reconstructing scenes in real-time using low-cost sensors has gained increasing attention in recent research and enabled numerous applications in graphics, vision, and robotics. While current techniques offer a substantial improvement regarding the quality of the reconstructed geometry, the degree of realism of the overall appearance is still lacking as the reconstruction of accurate surface appearance is highly challenging due to the complex interplay of surface geometry, reflectance properties and surrounding illumination. We present a novel approach that allows the reconstruction of both the geometry and the spatially varying surface albedo of a scene from RGB-D and IR data obtained via commodity sensors. In comparison to previous approaches, our approach offers an improved robustness and a significant speed-up to even fulfill the real-time requirements. For this purpose, we exploit the benefits of scene segmentation to improve albedo estimation due to the resulting better segment-wise coupling of IR and RGB data that takes into account the wavelength characteristics of different materials within the scene. The estimated albedo is directly integrated into the dense volumetric reconstruction framework using a novel weighting scheme to generate high-quality results. In our evaluation, we demonstrate that our approach allows albedo capturing of complicated scenarios including complex, high-frequent and strongly varying lighting as well as shadows. Numéro de notice : A2019-141 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.018 Date de publication en ligne : 04/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.018 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92479
in ISPRS Journal of photogrammetry and remote sensing > vol 150 (April 2019) . - pp 213 - 225[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt