Détail de l'auteur
Auteur Xiaojuan Liu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
An image-pyramid-based raster-to-vector conversion (IPBRTVC) framework for consecutive-scale cartography and synchronized generalization of classic objects / Chang Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 3 (March 2019)
[article]
Titre : An image-pyramid-based raster-to-vector conversion (IPBRTVC) framework for consecutive-scale cartography and synchronized generalization of classic objects Type de document : Article/Communication Auteurs : Chang Li, Auteur ; Xiaojuan Liu, Auteur ; Lu Wei, Auteur Année de publication : 2019 Article en page(s) : pp 169 - 178 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] chaîne de traitement
[Termes IGN] contrôle qualité
[Termes IGN] détection d'objet
[Termes IGN] image DMSP-OLS
[Termes IGN] image Landsat-8
[Termes IGN] vectorisationRésumé : (Auteur) There are some key problems in raster-to-vector conversion and cartographic generalization, which include (1) deficient automation and low accuracy in the traditional raster-to-vector conversion processing; (2) data-source inconsistency in cartographic generation, i.e., different raster data sources converted to vector; and (3) how to acquire arbitrary-scale vector data. To solve these problems, we initially propose an innovative image-pyramid-based raster-to-vector conversion (IPBRTVC) framework with quality control for consecutive-scale cartography and synchronized generalization, of which details can be modified accordingly under the IPBRTVC framework. Landsat-8 imagery and Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) night-time light imagery are used as a test dataset to extract classic objects in the geometry level. Experimental results show that the IPBRTVC framework not only solves the aforementioned problems well but also (1) improves efficiency of data processing by avoiding problems of corresponding features matching and topology errors, (2) contributes to develop relevant parallel computing system, and (3) helps to integrate the raster-to-vector conversion and consecutive-scale cartography. Numéro de notice : A2019-146 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.3.169 Date de publication en ligne : 01/03/2019 En ligne : https://doi.org/10.14358/PERS.85.3.169 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92474
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 3 (March 2019) . - pp 169 - 178[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019031 SL Revue Centre de documentation Revues en salle Disponible A Stepwise-Then-Orthogonal Regression (STOR) with quality control for optimizing the RFM of high-resolution satellite imagery / Chang Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 9 (September 2017)
[article]
Titre : A Stepwise-Then-Orthogonal Regression (STOR) with quality control for optimizing the RFM of high-resolution satellite imagery Type de document : Article/Communication Auteurs : Chang Li, Auteur ; Xiaojuan Liu, Auteur ; Yongjun Zhang, Auteur ; Zuxun Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 611 - 620 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] contrôle qualité
[Termes IGN] détection d'erreur
[Termes IGN] erreur aléatoire
[Termes IGN] image à haute résolution
[Termes IGN] image SPOT 5
[Termes IGN] modèle par fonctions rationnelles
[Termes IGN] régressionRésumé : (auteur) There are two major problems in Rational Function Model (RFM) solution: (a) Data source error, including gross error, random error, and systematic error; and (b) Model error, including over-parameterization and over-correction issues caused by unnecessary RFM parameters and exaggeration of random error in constant term of error-in-variables (EIV) model, respectively. In order to solve two major problems simultaneously, we propose a new approach named stepwise-then-orthogonal regression (STOR) with quality control. First, RFM parameters are selected by stepwise regression with gross error detection. Second, the revised orthogonal distance regression is utilized to adjust random error and address the overcorrection problem. Third, systematic error is compensated by Fourier series. The performance of conventional strategies and the proposed STOR are evaluated by control and check grids generated from SPOT5 high-resolution imagery. Compared with the least squares regression, partial least squares regression, ridge regression, and stepwise regression, the proposed STOR shows a significant improvement in accuracy. Numéro de notice : A2017-598 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.9.611 En ligne : https://doi.org/10.14358/PERS.83.9.611 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86874
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 9 (September 2017) . - pp 611 - 620[article]