Détail de l'éditeur
Télécom ParisTech
localisé à :
Paris
|
Documents disponibles chez cet éditeur (9)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Apprentissage profond pour l'imagerie SAR : du débruitage à l'interprétation de scène / Emanuele Dalsasso (2022)
Titre : Apprentissage profond pour l'imagerie SAR : du débruitage à l'interprétation de scène Titre original : Deep Learning for SAR Imagery: from denoising to scene understanding Type de document : Thèse/HDR Auteurs : Emanuele Dalsasso, Auteur ; Florence Tupin, Directeur de thèse ; Loïc Denis, Directeur de thèse Editeur : Paris [France] : Télécom ParisTech Année de publication : 2022 Autre Editeur : Paris : Institut Polytechnique de Paris Importance : 165 p. Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] chatoiement
[Termes IGN] image radar moiréeIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Le Radar à Synthèse d’Ouverture (RSO, aussi appelé SAR en anglais) permet d’acquérir des données pour l’observation de la Terre de jour comme de nuit, quelles que soient les conditions météorologiques. Grâce notamment au programme Copernicus de l’Agence Spatiale Européenne, nous disposons aujourd’hui d’un grand nombre de données distribuées librement. Cependant, l’exploitation de données satellitaires radar est limitée par la présence de très fortes fluctuations du signal rétrodiffusé par la scène imagée. En effet, les images SAR sont entachées par un phénomène intrinsèque aux systèmes d’imagerie cohérente : le chatoiement, communément appelé speckle. Dans cette thèse, nous visons à faciliter l’interprétation des images SAR grâce au développement de techniques de réduction de speckle. Les approches existantes reposent sur le modèle de Goodman, décrivant le speckle comme un bruit multiplicatif et spatialement non corrélé. Dans le domaine de la vision par ordinateur, les méthodes de débruitage s’appuyant sur un réseau neuronal convolutif (approches d’apprentissage profond) ont permis des grandes avancées et représentent aujourd’hui l’état de l’art. Nous proposons donc d’utiliser les techniques de débruitage basées sur les algorithmes d’apprentissage profond pour la réduction de speckle dans les images SAR (méthodes de despeckling). Premièrement, nous étudions l’adaptation des techniques dites supervisées, c.à.d. visant à minimiser l’écart, selon un certain critère, entre l’estimation fournie par le réseau et une image de référence, dite vérité terrain. Nous proposons la création d’une base de données d’images de référence en moyennant des piles d’images multi-temporelles acquises sur la même zone. Des paires d’images pour entraîner un réseau peuvent être générées en synthétisant du speckle selon le modèle de Goodman. Cependant, dans les images réelles le speckle est spatialement corrélé. La corrélation peut être typiquement réduite par un sous-échantillonnage d’un facteur 2, mais cela engendre une perte de résolution. Au vu des limites des approches supervisées, inspirés par la méthode auto-supervisée noise2noise, nous proposons d’apprendre un réseau directement sur des données réelles. Le principe des méthodes de débruitage auto-supervisées est le suivant : si un signal contient une composante déterministe et une composante aléatoire, un réseau entraîné à prédire une nouvelle réalisation de ce signal à partir d’une première réalisation indépendante ne pourra prédire que la composante déterministe, c.à.d. la scène sous-jacente, supprimant ainsi le speckle. Dans la méthode que nous développons, SAR2SAR, nous utilisons des séries multi-temporelles sous hypothèse de speckle temporellement décorrélé pour obtenir des réalisations indépendantes. Les changements sont compensés en recourant à une stratégie d’entraînement itérative. Le réseau SAR2SAR est donc entraîné sur des images dont le speckle est corrélé spatialement et peut être par conséquent appliqué directement sur les images radar, donnant des performances de très bonne qualité en termes de préservation de la résolution spatiale. L’apprentissage de SAR2SAR reste cependant lourd : la stratégie se déroule en plusieurs étapes pour compenser les changements et un jeu de données contenant des piles d’images doit être constitué. Avec l’approche MERLIN, nous relâchons ces contraintes en proposant une méthode d’apprentissage auto-supervisée mono-image. En effet dans les images SAR complexes, les partie réelles et imaginaires sont mutuellement indépendantes et elles peuvent être naturellement utilisées pour apprendre un réseau de manière auto-supervisée. Nous montrons la simplicité de mise en œuvre d’un tel cadre en entraînant un réseau pour trois modalités d’acquisitions, présentant des différences en termes de résolution spatiale, de textures et de corrélation spatiale du speckle. Numéro de notice : 17717 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse : Signal, Images, Automatique et robotique : Institut Polytechnique de Paris : 2022 Organisme de stage : Laboratoire Traitement et Communication de l'Information LTCI DOI : sans Date de publication en ligne : 12/05/2022 En ligne : https://theses.hal.science/tel-03666646 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100034
Titre : Low level feature detection in SAR images Type de document : Thèse/HDR Auteurs : Chenguang Liu, Auteur ; Florence Tupin, Directeur de thèse ; Yann Gousseau, Directeur de thèse Editeur : Paris [France] : Télécom ParisTech Année de publication : 2020 Importance : 138 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de l’Institut Polytechnique de Paris préparée à Télécom Paris, Spécialité de doctorat : Signal, Images, Automatique et robotiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] gradient
[Termes IGN] image radar moirée
[Termes IGN] modèle de Markov
[Termes IGN] segment de droiteIndex. décimale : THESE Thèses et HDR Résumé : (auteur) In this thesis we develop low level feature detectors for Synthetic Aperture Radar (SAR) images to facilitate the joint use of SAR and optical data. Line segments and edges are very important low level features in images which can be used for many applications like image analysis, image registration and object detection. Contrarily to the availability of many efficient low level feature detectors dedicated to optical images, there are very few efficient line segment detector and edge detector for SAR images mostly because of the strong multiplicative noise. In this thesis we develop a generic line segment detector and an efficient edge detector for SAR images.The proposed line segment detector which is named as LSDSAR, is based on a Markovian a contrario model and the Helmholtz principle, where line segments are validated according to their meaningfulness. More specifically, a line segment is validated if its expected number of occurences in a random image under the hypothesis of the Markovian a contrario model is small. Contrarily to the usual a contrario approaches, the Markovian a contrario model allows strong filtering in the gradient computation step, since dependencies between local orientations of neighbouring pixels are permitted thanks to the use of a first order Markov chain. The proposed Markovian a contrario model based line segment detector LSDSAR benefit from the accuracy and efficiency of the new definition of the background model, indeed, many true line segments in SAR images are detected with a control of the number of false detections. Moreover, very little parameter tuning is required in the practical applications of LSDSAR. The second work of this thesis is that we propose a deep learning based edge detector for SAR images. The contributions of the proposed edge detector are two fold: 1) under the hypothesis that both optical images and real SAR images can be divided into piecewise constant areas, we propose to simulate a SAR dataset using optical dataset; 2) we propose to train a classical CNN (convolutional neural network) edge detector, HED, directly on the graident fields of images. This, by using an adequate method to compute the gradient, enables SAR images at test time to have statistics similar to the training set as inputs to the network. More precisely, the gradient distribution for all homogeneous areas are the same and the gradient distribution for two homogeneous areas across boundaries depends only on the ratio of their mean intensity values. The proposed method, GRHED, significantly improves the state-of-the-art, especially in very noisy cases such as 1-look images. Note de contenu : 1- Context
2- SAR basics, statistics of SAR images and data used in this thesis
I Line segment detection in SAR images
3- Introduction
4- LSD, a line segment detector with false detection control
5- LSDSAR, a generic line segment detector for SAR images
6- Experiments
II Edge detection in SAR images using CNNs
7- Introduction
8- Presentation of the HED method and of the training dataset
9- GRHED, introducing a hand-crafted layer before the usual CNNs
10- Experiments
11- Summary of the thesisNuméro de notice : 25878 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Spécialité : Signal, Images, Automatique et robotique : Paris : 2020 nature-HAL : Thèse DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-02861903/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95689 Multitemporal SAR images denoising and change detection : applications to Sentinel-1 data / Weiying Zhao (2019)
Titre : Multitemporal SAR images denoising and change detection : applications to Sentinel-1 data Type de document : Thèse/HDR Auteurs : Weiying Zhao, Auteur ; Florence Tupin, Directeur de thèse Editeur : Bures-sur-Yvette : Université Paris-Saclay Année de publication : 2019 Autre Editeur : Paris [France] : Télécom ParisTech Importance : 181 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de l'Université Paris-Saclay préparée à Telecom ParisTech, Specialité de doctorat : traitement du signal et des imagesLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage profond
[Termes IGN] détection de changement
[Termes IGN] filtrage du bruit
[Termes IGN] filtrage temporel
[Termes IGN] filtre adaptatif
[Termes IGN] filtre de déchatoiement
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] radar à antenne synthétiqueIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The inherent speckle which is attached to any coherent imaging system affects the analysis and interpretation of synthetic aperture radar (SAR) images. To take advantage of well-registered multi-temporal SAR images, we improve the adaptive nonlocal temporal filter with state-of-the-art adaptive denoising methods and propose a patch based adaptive temporal filter. To address the bias problem of the denoising results, we propose a fast and efficient multitemporal despeckling method. The key idea of the proposed approach is the use of the ratio image, provided by the ratio between an image and the temporal mean of the stack. This ratio image is easier to denoise than a single image thanks to its improved stationarity. Besides, temporally stable thin structures are well-preserved thanks to the multi-temporal mean. Without reference image, we propose to use a patch-based auto-covariance residual evaluation method to examine the residual image and look for possible remaining structural contents. With speckle reduction images, we propose to use simplified generalized likelihood ratio method to detect the change area, change magnitude and change times in long series of well-registered images. Based on spectral clustering, we apply the simplified generalized likelihood ratio to detect the time series change types. Then, jet colormap and HSV colorization may be used to vividly visualize the detection results. These methods have been successfully applied to monitor farmland area, urban area, harbor region, and flooding area changes. Note de contenu : Introduction
I- Basics of SAR and used data
II- Multitemporal denoising
III- Multi-temporal images change detection
Conclusion and perspectiveNuméro de notice : 25845 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Traitement du signal et des images : Telecom ParisTech : 2019 Organisme de stage : Telecom ParisTech nature-HAL : Thèse DOI : sans En ligne : https://pastel.archives-ouvertes.fr/tel-02095817/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95253
Titre : Géodétection des réseaux enterrés par imagerie radar Type de document : Thèse/HDR Auteurs : Guillaume Terrasse, Auteur ; Jean-Marie Nicolas, Directeur de thèse Editeur : Paris [France] : Télécom ParisTech Année de publication : 2017 Importance : 236 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour obtenir le grade de Docteur de Télécom ParisTech, Spécialité “Traitement du Signal et de l’Image”Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage dirigé
[Termes IGN] canalisation
[Termes IGN] détection automatique
[Termes IGN] filtrage du bruit
[Termes IGN] fouillis d'échos
[Termes IGN] géolocalisation par radar pénétrant GPR
[Termes IGN] hyperbole
[Termes IGN] image radar
[Termes IGN] radargrammétrie
[Termes IGN] traitement du signal
[Termes IGN] transformation en ondelettesIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L’objectif de la thèse est d’améliorer les différents traitements et de proposer une visualisation claire et intuitive à l’opérateur des données en sortie d’un géoradar (radargramme) afin de pouvoir localiser de manière précise les réseaux de canalisations enfouis. Notamment, nous souhaitons mettre en évidence les hyperboles présentes dans les radargrammes car celles-ci sont caractéristiques de la présence d'une canalisation. Dans un premier temps nous nous sommes intéressés à la suppression de l’information inutile (clutter) pouvant gêner la détection des hyperboles. Nous avons ainsi proposé une méthode de filtrage du clutter et du bruit des radargrammes. Ensuite, nous avons travaillé sur l’élaboration d’une méthode permettant de détecter automatiquement les hyperboles dans un radargramme ainsi qu’une estimation de sa fonction mathématique dans des conditions quasi-temps réel. Et enfin nous avons également proposé une méthode de séparation de source permettant de distinguer le clutter et le signal utile du radargramme tout en ayant un impact minimal sur les hyperboles. Ces derniers travaux ouvrent d’autres possibilités pour le filtrage, le rehaussement ou la détection automatique d’hyperboles. Note de contenu : 1- Introduction
2- Le Géoradar
3- Rehaussement des hyperboles d’un radargramme
4- Détection automatique d’hyperboles
5- Séparation de sources
6- Conclusion et PerspectivesNuméro de notice : 25754 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Spécialité : Traitement du Signal et de l’Image : Paris : 2017 Organisme de stage : LTCI - Laboratoire Traitement et Communication de l'Information nature-HAL : Thèse DOI : sans En ligne : http://www.theses.fr/2017ENST0015 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94951 Acquisition et reconstruction de données 3D denses sous-marines en eau peu profonde par des robots d'exploration / Loïca Avanthey (2016)
Titre : Acquisition et reconstruction de données 3D denses sous-marines en eau peu profonde par des robots d'exploration Type de document : Thèse/HDR Auteurs : Loïca Avanthey, Auteur ; Michel Roux, Directeur de thèse ; Laurent Beaudoin, Directeur de thèse Editeur : Paris [France] : Télécom ParisTech Année de publication : 2016 Importance : 262 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de docteur délivré par Télécom Paris Tech, spécialité Signal et ImagesLangues : Français (fre) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] acquisition de données
[Termes IGN] appariement de points
[Termes IGN] capteur optique
[Termes IGN] carte bathymétrique
[Termes IGN] couple stéréoscopique
[Termes IGN] données de terrain
[Termes IGN] données localisées 3D
[Termes IGN] étalonnage de capteur (imagerie)
[Termes IGN] fond marin
[Termes IGN] réalité de terrain
[Termes IGN] recalage de données localisées
[Termes IGN] reconstruction 3D
[Termes IGN] relief sous-marin
[Termes IGN] robot
[Termes IGN] scène sous-marine
[Termes IGN] semis de pointsIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Notre planète est pour l’essentiel recouverte par les mers et les océans, or notre connaissance des fonds marins est très inférieure à celle que nous possédons sur les terres émergées. Dans ce mémoire, nous cherchons à concevoir un système dédié à la cartographie thématique à grande échelle pour obtenir à la demande un nuage de points dense représentatif d’une scène sous-marine ou subaquatique par reconstruction tridimensionnelle. Le caractère complexe de ce type de système nous amène à privilégier une approche délibérément transversale. Nous nous intéresserons en particulier aux problématiques posées par l’étude à l’échelle des individus de petites zones en eau peu profonde. Les premières concernent l’acquisition in situ efficace de couples stéréoscopiques avec une logistique adaptée à la taille des zones observées : nous proposons pour cela un microsystème agile, peu coûteux et suffisamment automatisé pour fournir des données reproductibles et comparables. Les secondes portent sur l’extraction fiable de l’information tridimensionnelle à partir des données acquises : nous exposons les algorithmes que nous avons élaborés pour prendre en compte les caractéristiques particulières du milieu aquatique (dynamisme, propagation difficile des ondes électromagnétiques, etc.). Nous abordons donc en détail dans ce mémoire les problèmes d’appariement dense, d’étalonnage, d’acquisition in situ, de recalage et de redondance des données rencontrés dans le milieu sous-marin. Note de contenu : Introduction
1 - Contexte
2 - Nuages de points sous-marins
3 - Mise en oeuvre et analyse
4 - Conclusion et perspectivesNuméro de notice : 21585 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse : Signal et Image : Télécom Paris Tech : 2016 nature-HAL : Thèse DOI : sans En ligne : http://www.theses.fr/2016ENST0055 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90609 Instaurer des données, instaurer des publics : une enquête sociologique dans les coulisses de l'open data / Samuel Goeta (2016)PermalinkExtraction et reconstruction des bâtiments en milieu urbain à partir d’images satellitaires optiques et radar à haute résolution / Hélène Sportouche (2010)PermalinkPermalinkApprentissage automatique des classes d'occupation du sol et représentation en mots visuels des images satellitaires / Marie Lauginie Lienou (2009)Permalink