Détail de l'auteur
Auteur Xinbo Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Vehicle detection in aerial images / Michael Ying Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 4 (avril 2019)
[article]
Titre : Vehicle detection in aerial images Type de document : Article/Communication Auteurs : Michael Ying Yang, Auteur ; Wentong Liao, Auteur ; Xinbo Li, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 297 - 304 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] compréhension de l'image
[Termes IGN] détection d'objet
[Termes IGN] entropie
[Termes IGN] image aérienne
[Termes IGN] orthoimage
[Termes IGN] précision de la classification
[Termes IGN] qualité d'image
[Termes IGN] réseau neuronal convolutif
[Termes IGN] véhicule automobileRésumé : (Auteur) The detection of vehicles in aerial images is widely applied in many applications. Comparing with object detection in the ground view images, vehicle detection in aerial images remains a challenging problem because of small vehicle size and the complex background. In this paper, we propose a novel double focal loss convolutional neural network (DFL-CNN) framework. In the proposed framework, the skip connection is used in the CNN structure to enhance the feature learning. Also, the focal loss function is used to substitute for conventional cross entropy loss function in both of the region proposal network (RPN) and the final classifier. We further introduce the first large-scale vehicle detection dataset ITCVD with ground truth annotations for all the vehicles in the scene. We demonstrate the performance of our model on the existing benchmark German Aerospace Center (DLR) 3K dataset as well as the ITCVD dataset. The experimental results show that our DFL-CNN outperforms the baselines on vehicle detection. Numéro de notice : A2019-163 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.4.297 Date de publication en ligne : 01/04/2019 En ligne : https://doi.org/10.14358/PERS.85.4.297 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92568
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 4 (avril 2019) . - pp 297 - 304[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019041 SL Revue Centre de documentation Revues en salle Disponible