Détail de l'auteur
Auteur Guangyun Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hyperspectral image classification with squeeze multibias network / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
[article]
Titre : Hyperspectral image classification with squeeze multibias network Type de document : Article/Communication Auteurs : Leyuan Fang, Auteur ; Guangyun Liu, Auteur ; Shutao Li, Auteur ; Pedram Ghamisi, Auteur ; Jon Atli Benediktsson, Auteur Année de publication : 2019 Article en page(s) : pp 1291 - 1301 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] erreur systématique
[Termes IGN] image hyperspectraleRésumé : (Auteur) A convolutional neural network (CNN) has recently demonstrated its outstanding capability for the classification of hyperspectral images (HSIs). Typical CNN-based methods usually adopt image patches as inputs to the network. However, a fixed-size image patch in HSI with complex spatial contexts may contain multiple ground objects of different classes, which will deteriorate the classification performance of the CNN. In addition, traditional convolutional layers adopted in the CNN have a huge amount of parameters needed to be tuned, which will cause high computational cost. To address the above-mentioned issues, a novel squeeze multibias network (SMBN) is proposed for HSI classification. Specifically, the proposed SMBN first introduces the multibias module (MBM), which incorporates multibias into the rectified linear unit layers. The MBM can decouple the feature maps of input patches into multiple response maps (corresponding to different ground objects) and adaptively select the meaningful maps for classification. Furthermore, the proposed SMBN replaces the traditional convolutional layer with a squeeze convolution module, which can greatly reduce the number of parameters in the network, thus saving the running time, while still maintaining high classification accuracy. Experimental results on three real HSIs demonstrate the superiority of the proposed SMBN method over several state-of-the-art classification approaches. Numéro de notice : A2019-113 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2865953 Date de publication en ligne : 13/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2865953 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92453
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 3 (March 2019) . - pp 1291 - 1301[article]