Détail de l'auteur
Auteur Shichao Jin |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Stem-leaf segmentation and phenotypic trait extraction of individual maize using terrestrial LiDAR data / Shichao Jin in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
[article]
Titre : Stem-leaf segmentation and phenotypic trait extraction of individual maize using terrestrial LiDAR data Type de document : Article/Communication Auteurs : Shichao Jin, Auteur ; Yanjun Su, Auteur ; Fangfang Wu, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1336 - 1346 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] maïs (céréale)
[Termes IGN] phénologie
[Termes IGN] segmentation en régionsRésumé : (Auteur) Accurate and high throughput extraction of crop phenotypic traits, as a crucial step of molecular breeding, is of great importance for yield increasing. However, automatic stem-leaf segmentation as a prerequisite of many precise phenotypic trait extractions is still a big challenge. Current works focus on the study of the 2-D image-based segmentation, which are sensitive to illumination and occlusion. Light detection and ranging (LiDAR) can obtain accurate 3-D information with its active laser scanning and strong penetration ability, which breaks through phenotyping from 2-D to 3-D. However, few researches have addressed the problem of the LiDAR-based stem-leaf segmentation. In this paper, we proposed a median normalized-vector growth (MNVG) algorithm, which can segment stem and leaf with four steps, i.e., preprocessing, stem growth, leaf growth, and postprocessing. The MNVG method was tested by 30 maize samples with different heights, compactness, leaf numbers, and densities from three growing stages. Moreover, phenotypic traits at leaf, stem, and individual levels were extracted with the truly segmented instances. The mean accuracy of segmentation at point level in terms of the recall, precision, F-score, and overall accuracy were 0.92, 0.93, 0.92, and 0.93, respectively. The accuracy of phenotypic trait extraction in leaf, stem, and individual levels ranged from 0.81 to 0.95, 0.64 to 0.97, and 0.96 to 1, respectively. To our knowledge, this paper proposed the first LiDAR-based stem-leaf segmentation and phenotypic trait extraction method in agriculture field, which may contribute to the study of LiDAR-based plant phonemics and precise agriculture. Numéro de notice : A2019-114 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2866056 Date de publication en ligne : 19/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2866056 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92454
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 3 (March 2019) . - pp 1336 - 1346[article]