Détail de l'auteur
Auteur Matthew Haffner |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A spatial analysis of non‐English Twitter activity in Houston, TX / Matthew Haffner in Transactions in GIS, vol 22 n° 4 (August 2018)
[article]
Titre : A spatial analysis of non‐English Twitter activity in Houston, TX Type de document : Article/Communication Auteurs : Matthew Haffner, Auteur Année de publication : 2018 Article en page(s) : pp 913 - 929 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Houston (Texas)
[Termes IGN] langage naturel (informatique)
[Termes IGN] régression
[Termes IGN] TwitterRésumé : (Auteur) The use of social media data in geographic studies has become common, yet the question of social media's validity in such contexts is often overlooked. Social media data suffers from a variety of biases and limitations; nevertheless, with a proper understanding of the drawbacks, these data can be powerful. As cities seek to become “smarter,” they can potentially use social media data to creatively address the needs of their most vulnerable groups, such as ethnic minorities. However, questions remain unanswered regarding who uses these social networking platforms, how people use these platforms, and how representative social media data is of users' everyday lives. Using several forms of regression, I explore the relationships between a conventional data source (the U.S. Census) and a subset of Twitter data potentially representative of minority groups: tweets created by users with an account language other than English. A considerable amount of non‐stationarity is uncovered, which should serve as a warning against sweeping statements regarding the demographics of users and where people prefer to post. Further, I find that precisely located Twitter data informs us more about the digital status of places and less about users' day‐to‐day travel patterns. Numéro de notice : A2018-574 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12335 Date de publication en ligne : 11/04/2018 En ligne : https://doi.org/10.1111/tgis.12335 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92320
in Transactions in GIS > vol 22 n° 4 (August 2018) . - pp 913 - 929[article]