Détail de l'auteur
Auteur Joakim Strandberg |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Real-time sea-level monitoring using Kalman filtering of GNSS-R data / Joakim Strandberg in GPS solutions, vol 23 n° 3 (July 2019)
[article]
Titre : Real-time sea-level monitoring using Kalman filtering of GNSS-R data Type de document : Article/Communication Auteurs : Joakim Strandberg, Auteur ; Thomas Hobiger, Auteur ; Rüdiger Haas, Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] B-Spline
[Termes IGN] déformation de la croute terrestre
[Termes IGN] filtre de Kalman
[Termes IGN] glace de mer
[Termes IGN] marée terrestre
[Termes IGN] niveau de la mer
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflectométrie par GNSS
[Termes IGN] surface de la mer
[Termes IGN] temps réel
[Vedettes matières IGN] AltimétrieRésumé : (auteur) Current GNSS-R (GNSS reflectometry) techniques for sea surface measurements require data collection over longer periods, limiting their usability for real-time applications. In this work, we present a new, alternative GNSS-R approach based on the unscented Kalman filter and the so-called inverse modeling approach. The new method makes use of a mathematical description that relates SNR (signal-to-noise ratio) variations to multipath effects and uses a B-spline formalism to obtain time series of reflector height. The presented algorithm can provide results in real time with a precision that is significantly better than spectral inversion methods and almost comparable to results from inverse modeling in post-processing mode. To verify the performance, the method has been tested at station GTGU at the Onsala Space Observatory, Sweden, and at the station SPBY in Spring Bay, Australia. The RMS (root mean square) error with respect to nearby tide gauge data was found to be 2.0 cm at GTGU and 4.8 cm at SPBY when evaluating the output corresponding to real-time analysis. The method can also be applied in post-processing, resulting in RMS errors of 1.5 cm and 3.3 cm for GTGU and SPBY, respectively. Finally, based on SNR data from GTGU, it is also shown that the Kalman filter approach is able to detect the presence of sea ice with a higher temporal resolution than the previous methods and traditional remote sensing techniques which monitor ice in coastal regions. Numéro de notice : A2019-198 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-019-0851-1 En ligne : https://doi.org/10.1007/s10291-019-0851-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92653
in GPS solutions > vol 23 n° 3 (July 2019)[article]