Détail de l'auteur
Auteur Tuomas Yrttimaa |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Exploring tree growth allometry using two-date terrestrial laser scanning / Tuomas Yrttimaa in Forest ecology and management, vol 518 (August-15 2022)
[article]
Titre : Exploring tree growth allometry using two-date terrestrial laser scanning Type de document : Article/Communication Auteurs : Tuomas Yrttimaa, Auteur ; Ville Luoma, Auteur ; Ninni Saarinen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120303 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] allométrie
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] houppier
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] surface terrière
[Termes IGN] volume en boisRésumé : (auteur) Tree growth is a physio-ecological phenomena of high interest among researchers across disciplines. Observing changes in tree characteristics has conventionally required either repeated measurements of the characteristics of living trees, retrospective measurements of destructively sampled trees, or modelling. The use of close-range sensing techniques such as terrestrial laser scanning (TLS) has enabled non-destructive approaches to reconstruct the three-dimensional (3D) structure of trees and tree communities in space and time. This study aims at improving the understanding of tree allometry in general and interactions between tree growth and its neighbourhood in particular by using two-date point clouds. We investigated how variation in the increments in basal area at the breast height (Δg1.3), basal area at height corresponding to 60% of tree height (Δg06h), and volume of the stem section below 50% of tree height (Δv05h) can be explained with TLS point cloud-based attributes characterizing the spatiotemporal structure of a tree crown and crown neighbourhood, entailing the competitive status of a tree. The analyses were based on 218 trees on 16 sample plots whose 3D characteristics were obtained at the beginning (2014, T1) and at the end of the monitoring period (2019, T2) from multi-scan TLS point clouds using automatic point cloud processing methods. The results of this study showed that, within certain tree communities, strong relationships (|r| > 0.8) were observed between increments in the stem dimensions and the attributes characterizing crown structure and competition. Most often, attributes characterizing the competitive status of a tree, and the crown structure at T1, were the most important attributes to explain variation in the increments of stem dimensions. Linear mixed-effect modelling showed that single attributes could explain up to 35–60% of the observed variation in Δg1.3, Δg06h and Δv05h, depending on the tree species. This tree-level evidence of the allometric relationship between stem growth and crown dynamics can further be used to justify landscape-level analyses based on airborne remote sensing technologies to monitor stem growth through the structure and development of crown structure. This study contributes to the existing knowledge by showing that laser-based close-range sensing is a feasible technology to provide 3D characterization of stem and crown structure, enabling one to quantify structural changes and the competitive status of trees for improved understanding of the underlying growth processes. Numéro de notice : A2022-484 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2022.120303 Date de publication en ligne : 22/05/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100899
in Forest ecology and management > vol 518 (August-15 2022) . - n° 120303[article]Assessing structural complexity of individual scots pine trees by comparing terrestrial laser scanning and photogrammetric point clouds / Noora Tienaho in Forests, Vol 13 n° 8 (August 2022)
[article]
Titre : Assessing structural complexity of individual scots pine trees by comparing terrestrial laser scanning and photogrammetric point clouds Type de document : Article/Communication Auteurs : Noora Tienaho, Auteur ; Tuomas Yrttimaa, Auteur ; Ville Kankare, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1305 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse comparative
[Termes IGN] Finlande
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] photogrammétrie aérienne
[Termes IGN] Pinus sylvestris
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] structure-from-motion
[Termes IGN] télémétrie laser terrestreRésumé : (auteur) Structural complexity of trees is related to various ecological processes and ecosystem services. To support management for complexity, there is a need to assess the level of structural complexity objectively. The fractal-based box dimension (Db) provides a holistic measure of the structural complexity of individual trees. This study aimed to compare the structural complexity of Scots pine (Pinus sylvestris L.) trees assessed with Db that was generated with point cloud data from terrestrial laser scanning (TLS) and aerial imagery acquired with an unmanned aerial vehicle (UAV). UAV imagery was converted into point clouds with structure from motion (SfM) and dense matching techniques. TLS and UAV measured Db-values were found to differ from each other significantly (TLS: 1.51 ± 0.11, UAV: 1.59 ± 0.15). UAV measured Db-values were 5% higher, and the range was wider (TLS: 0.81–1.81, UAV: 0.23–1.88). The divergence between TLS and UAV measurements was found to be explained by the differences in the number and distribution of the points and the differences in the estimated tree heights and number of boxes in the Db-method. The average point density was 15 times higher with TLS than with UAV (TLS: 494,000, UAV 32,000 points/tree), and TLS received more points below the midpoint of tree heights (65% below, 35% above), while UAV did the opposite (22% below, 78% above). Compared to the field measurements, UAV underestimated tree heights more than TLS (TLS: 34 cm, UAV: 54 cm), resulting in more boxes of Db-method being needed (4–64%, depending on the box size). Forest structure (two thinning intensities, three thinning types, and a control group) significantly affected the variation of both TLS and UAV measured Db-values. Still, the divergence between the two approaches remained in all treatments. However, TLS and UAV measured Db-values were consistent, and the correlation between them was 75%. Numéro de notice : A2022-652 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13081305 Date de publication en ligne : 16/08/2022 En ligne : https://doi.org/10.3390/f13081305 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101499
in Forests > Vol 13 n° 8 (August 2022) . - n° 1305[article]Assessing the effects of thinning on stem growth allocation of individual Scots pine trees / Ninni Saarinen in Forest ecology and management, vol 474 ([15/10/2020])
[article]
Titre : Assessing the effects of thinning on stem growth allocation of individual Scots pine trees Type de document : Article/Communication Auteurs : Ninni Saarinen, Auteur ; Ville Kankare, Auteur ; Tuomas Yrttimaa, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 14 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] Finlande
[Termes IGN] gestion forestière
[Termes IGN] image captée par drone
[Termes IGN] Pinus sylvestris
[Termes IGN] reconstruction 3D
[Termes IGN] semis de points
[Termes IGN] troncRésumé : (auteur) Forest management alters the growing conditions and thus further development of trees. However, quantitative assessment of forest management on tree growth has been demanding as methodologies for capturing changes comprehensively in space and time have been lacking. Terrestrial laser scanning (TLS) has shown to be capable of providing three-dimensional (3D) tree stem reconstructions required for revealing differences between stem shapes and sizes. In this study, we used 3D reconstructions of tree stems from TLS and an unmanned aerial vehicle (UAV) to investigate how varying thinning treatments and the following growth effects affected stem shape and size of Scots pine (Pinus sylvestris L.) trees. The results showed that intensive thinning resulted in more stem volume and therefore total biomass allocation and carbon uptake compared to the moderate thinning. Relationship between tree height and diameter at breast height (i.e. slenderness) varied between both thinning intensity and type (i.e. from below and above) indicating differing response to thinning and allocation of stem growth of Scots pine trees. Furthermore, intensive thinning, especially from below, produced less variation in relative stem attributes characterizing stem shape and size. Thus, it can be concluded that thinning intensity, type, and the following growth effects have an impact on post-thinning stem shape and size of Scots pine trees. Our study presented detailed measurements on post-thinning stem growth of Scots pines that have been laborious or impracticable before the emergence of detailed 3D technologies. Moreover, the stem reconstructions from TLS and UAV provided variety of attributes characterizing stem shape and size that have not traditionally been feasible to obtain. The study demonstrated that detailed 3D technologies, such as TLS and UAV, provide information that can be used to generate new knowledge for supporting forest management and silviculture as well as improving ecological understanding of boreal forests. Numéro de notice : A2020-623 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2020.118344 Date de publication en ligne : 29/06/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118344 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96020
in Forest ecology and management > vol 474 [15/10/2020] . - 14 p.[article]Detecting and characterizing downed dead wood using terrestrial laser scanning / Tuomas Yrttimaa in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Detecting and characterizing downed dead wood using terrestrial laser scanning Type de document : Article/Communication Auteurs : Tuomas Yrttimaa, Auteur ; Ninni Saarinen, Auteur ; Ville Luoma, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 76 - 90 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bois mort
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] placette d'échantillonnage
[Termes IGN] qualité des données
[Termes IGN] Ransac (algorithme)
[Termes IGN] rastérisation
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (Auteur) Dead wood is a key forest structural component for maintaining biodiversity and storing carbon. Despite its important role in a forest ecosystem, quantifying dead wood alongside standing trees has often neglected when investigating the feasibility of terrestrial laser scanning (TLS) in forest inventories. The objective of this study was therefore to develop an automatic method for detecting and characterizing downed dead wood with a diameter exceeding 5 cm using multi-scan TLS data. The developed four-stage algorithm included (1) RANSAC-cylinder filtering, (2) point cloud rasterization, (3) raster image segmentation, and (4) dead wood trunk positioning. For each detected trunk, geometry-related quality attributes such as dimensions and volume were automatically determined from the point cloud. For method development and validation, reference data were collected from 20 sample plots representing diverse southern boreal forest conditions. Using the developed method, the downed dead wood trunks were detected with an overall completeness of 33% and correctness of 76%. Up to 92% of the downed dead wood volume were detected at plot level with mean value of 68%. We were able to improve the detection accuracy of individual trunks with visual interpretation of the point cloud, in which case the overall completeness was increased to 72% with mean proportion of detected dead wood volume of 83%. Downed dead wood volume was automatically estimated with an RMSE of 15.0 m3/ha (59.3%), which was reduced to 6.4 m3/ha (25.3%) as visual interpretation was utilized to aid the trunk detection. The reliability of TLS-based dead wood mapping was found to increase as the dimensions of dead wood trunks increased. Dense vegetation caused occlusion and reduced the trunk detection accuracy. Therefore, when collecting the data, attention must be paid to the point cloud quality. Nevertheless, the results of this study strengthen the feasibility of TLS-based approaches in mapping biodiversity indicators by demonstrating an improved performance in quantifying ecologically most valuable downed dead wood in diverse forest conditions. Numéro de notice : A2019-205 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.007 Date de publication en ligne : 16/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92668
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 76 - 90[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt