Détail de l'auteur
Auteur Langning Huo |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Classification of pine wilt disease at different infection stages by diagnostic hyperspectral bands / Niwen Li in Ecological indicators, vol 142 (September 2022)
[article]
Titre : Classification of pine wilt disease at different infection stages by diagnostic hyperspectral bands Type de document : Article/Communication Auteurs : Niwen Li, Auteur ; Langning Huo, Auteur ; Xiaoli Zhang, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aiguille
[Termes IGN] analyse discriminante
[Termes IGN] image hyperspectrale
[Termes IGN] Pinus densiflora
[Termes IGN] Pinus koraiensis
[Termes IGN] santé des forêts
[Termes IGN] signature spectrale
[Termes IGN] surveillance forestièreMots-clés libres : competitive adaptive reweighted sampling = échantillonnage compétitif adaptatif pondéré Résumé : (auteur) Pine wilt disease (PWD) is a very destructive forest disease that causes the mortality of pine. The infected trees usually die within three months, and the disease spreads fast with the long-horned beetle as the medium if the infected trees are not removed from the forest in time. Therefore, detecting the infected trees at different infection stage, especially the early infection, is crucial for preventing PWD spread. This study aims to exhibit the spectral differences of the pine needles between healthy pines and infected pines at different infection stages and reveal the diagnostic spectral bands for classifying the different infected stage trees. We collected needle samples from healthy, early-, middle-, late-stage infected trees in a Japanese pine (Pinus densiflora) forest and a Korean pine (Pinus koraiensis) forest in northern China to explore the spectral and biochemical properties differences of these four classes, and selected the sensitive bands combining competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA). The selected bands were used for the four infection stages classification by linear discriminant analysis (LDA) algorithm. The results show that Chlorophyll a, chlorophyll b, carotenoids, and moisture content decreases with the aggravation of infection. The green (510–530 nm), red-edge (680–760 nm), and short-wave infrared (1400–1420 nm and 1925–1965 nm) bands are the sensitive bands, and the overall accuracy is 77 % and 78 % for the Japanese pine and Korean pine respectively when using these bands for classifying healthy, early-, middle-, late-stage infected trees. The results demonstrate that physiological parameters including Chlorophyll a, chlorophyll b, carotenoids, and moisture content can be used as the diagnostic parameters of PWD, and the selected sensitive spectral bands are feasible for detecting the stress symptoms of the Japanese pine and Korean pine. Numéro de notice : A2022-617 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ecolind.2022.109198 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.1016/j.ecolind.2022.109198 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101374
in Ecological indicators > vol 142 (September 2022)[article]Towards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD) / Langning Huo in Remote sensing of environment, vol 270 (March 2022)
[article]
Titre : Towards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD) Type de document : Article/Communication Auteurs : Langning Huo, Auteur ; Eva Lindberg, Auteur ; Johan Holmgren, Auteur Année de publication : 2022 Article en page(s) : n° 112857 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] hauteur à la base du houppier
[Termes IGN] houppier
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] sous-bois
[Termes IGN] sous-étage
[Termes IGN] strate végétale
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] SuèdeRésumé : (auteur) Obtaining low vegetation data is important in order to quantify the structural characteristics of a forest. Dense three-dimensional (3D) laser scanning data can provide information on the vertical profile of a forest. However, most studies have focused on the dominant and subdominant layers of the forest, while few studies have tried to delineate the low vegetation. To address this issue, we propose a framework for individual tree crown (ITC) segmentation from laser data that focuses on both overstory and understory trees. The framework includes 1) a new algorithm (SSD) for 3D ITC segmentation of dominant trees, by detecting the symmetrical structure of the trees, and 2) removing points of dominant trees and mean shift clustering of the low vegetation. The framework was tested on a boreal forest in Sweden and the performance was compared 1) between plots with different stem density levels, vertical complexities, and tree species composition, and 2) using airborne laser scanning (ALS) data, terrestrial laser scanning (TLS) data, and merged ALS and TLS data (ALS + TLS data). The proposed framework achieved detection rates of 0.87 (ALS + TLS), 0.86 (TLS), and 0.76 (ALS) when validated with field-inventory data (of trees with a diameter at breast height ≥ 4 cm). When validating the estimated number of understory trees by visual interpretation, the framework achieved 19%, 21%, and 39% root-mean-square error values with ALS + TLS, TLS, and ALS data, respectively. These results show that the SSD algorithm can successfully separate laser points of overstory and understory trees, ensuring the detection and segmentation of low vegetation in forest. The proposed framework can be used with both ALS and TLS data, and achieve ITC segmentation for forests with various structural attributes. The results also illustrate the potential of using ALS data to delineate low vegetation. Numéro de notice : A2022-127 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112857 Date de publication en ligne : 03/01/2022 En ligne : https://doi.org/10.1016/j.rse.2021.112857 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99707
in Remote sensing of environment > vol 270 (March 2022) . - n° 112857[article]Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS) / Langning Huo in Remote sensing of environment, Vol 255 (March 2021)
[article]
Titre : Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS) Type de document : Article/Communication Auteurs : Langning Huo, Auteur ; Henrik J. Persson, Auteur ; Eva Lindberg, Auteur Année de publication : 2021 Article en page(s) : n° 112240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande infrarouge
[Termes IGN] écho radar
[Termes IGN] houppier
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de stress
[Termes IGN] indice de végétation
[Termes IGN] insecte nuisible
[Termes IGN] maladie parasitaire
[Termes IGN] Picea mariana
[Termes IGN] Scolytinae
[Termes IGN] signature spectrale
[Termes IGN] Suède
[Termes IGN] vulnérabilitéRésumé : (auteur) The European spruce bark beetle (Ips typographus [L.]) is one of the most damaging pest insects of European spruce forests. A crucial measure in pest control is the removal of infested trees before the beetles leave the bark, which generally happens before the end of June. However, stressed tree crowns do not show any significant color changes in the visible spectrum at this early-stage of infestation, making early detection difficult. In order to detect the related forest stress at an early stage, we investigated the differences in radar and spectral signals of healthy and stressed trees. How the characteristics of stressed trees changed over time was analyzed for the whole vegetation season, which covered the period before attacks (April), early-stage infestation (‘green-attacks’, May to July), and middle to late-stage infestation (August to October). The results show that spectral differences already existed at the beginning of the vegetation season, before the attacks. The spectral separability between the healthy and infested samples did not change significantly during the ‘green-attack’ stage. The results indicate that the trees were stressed before the attacks and had spectral signatures that differed from healthy ones. These stress-induced spectral changes could be more efficient indicators of early infestations than the ‘green-attack’ symptoms. In this study we used Sentinel-1 and 2 images of a test site in southern Sweden from April to October in 2018 and 2019. The red and SWIR bands from Sentinel-2 showed the highest separability of healthy and stressed samples. The backscatter from Sentinel-1 and additional bands from Sentinel-2 contributed only slightly in the Random Forest classification models. We therefore propose the Normalized Distance Red & SWIR (NDRS) index as a new index based on our observations and the linear relationship between the red and SWIR bands. This index identified stressed forest with accuracies from 0.80 to 0.88 before the attacks, from 0.80 to 0.82 in the early-stage infestation, and from 0.81 to 0.91 in middle- and late-stage infestations. These accuracies are higher than those attained by established vegetation indices aimed at ‘green-attack’ detection, such as the Normalized Difference Water Index, Ratio Drought Index, and Disease Stress Water Index. By using the proposed method, we highlight the potential of using NDRS with Sentinel-2 images to estimate forest vulnerability to European spruce bark beetle attacks early in the vegetation season. Numéro de notice : A2021-190 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2020.112240 Date de publication en ligne : 20/01/2021 En ligne : https://doi.org/10.1016/j.rse.2020.112240 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97111
in Remote sensing of environment > Vol 255 (March 2021) . - n° 112240[article]A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its applications in forest defoliation estimation / Langning Huo in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its applications in forest defoliation estimation Type de document : Article/Communication Auteurs : Langning Huo, Auteur ; Xiaoli Zhang, Auteur Année de publication : 2019 Article en page(s) : pp 302 - 312 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] défoliation
[Termes IGN] densité des points
[Termes IGN] régression linéaire
[Termes IGN] télémétrie laser terrestre
[Termes IGN] voxelRésumé : (Auteur) Voxelization is an efficient and frequently used data process that is applied to terrestrial laser scanning (TLS) data to facilitate data management and reduce storage size. In this study, an innovative method of equiangular sectorial voxelization is presented based on the distinctive point distribution characteristic of single-scan TLS. It has the function of containing the same number of laser beams going through each voxel, which results in metrics that can be applied to delineate forest conditions. To verify the effectiveness of the new voxelization method and to illustrate its application, 48 plots and 1098 individual trees with different degrees of defoliation were scanned using single-scan TLS. Their defoliation could be linearly regressed by using only point density metrics derived from this new shape of voxels. A 0.89 R2 value and a 12 RMSE (% of defoliation) were obtained for individual-tree-scale estimation, and a 0.83 R2 value and a 12 RMSE (% of defoliation) were obtained for plot-scale estimation. We conclude that the new voxelization method was effective, and the point density that was thus calculated was an efficient feature that revealed forest attributes. Numéro de notice : A2019-212 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.018 Date de publication en ligne : 30/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.018 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92678
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 302 - 312[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt