Détail de l'auteur
Auteur Angela Blázquez-Casado |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Combining low-density LiDAR and satellite images to discriminate species in mixed Mediterranean forest / Angela Blázquez-Casado in Annals of Forest Science, vol 76 n° 2 (June 2019)
[article]
Titre : Combining low-density LiDAR and satellite images to discriminate species in mixed Mediterranean forest Type de document : Article/Communication Auteurs : Angela Blázquez-Casado, Auteur ; Rafael Calama, Auteur ; Manuel Valbuena, Auteur ; Marta Vergarechea, Auteur ; Francisco Rodriguez, Auteur Année de publication : 2019 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse discriminante
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt méditerranéenne
[Termes IGN] houppier
[Termes IGN] image Pléiades-HR
[Termes IGN] Pinus pinaster
[Termes IGN] Pinus pineaRésumé : (Auteur) Context : The discrimination of tree species at individual level in mixed Mediterranean forest based on remote sensing is a field which has gained greater importance. In these stands, the capacity to predict the quality and quantity of non-wood forest products is particularly important due to the very different goods the two species produce.
Aims : To assess the potential of using low-density airborne LiDAR data combined with high-resolution Pleiades images to discriminate two different pine species in mixed Mediterranean forest (Pinus pinea L. and Pinus pinaster Ait.) at individual tree level.
Methods : A Random Forest model was trained using plots from the pure stand dataset, determining which LiDAR and satellite variables allow us to obtain better discrimination between groups. The model constructed was then validated by classifying individuals in an independent set of pure and mixed stands.
Results : The model combining LiDAR and Pleiades data provided greater accuracy (83.3% and 63% in pure and mixed validation stands, respectively) than the models which only use one type of covariables.
Conclusion : The automatic crown delineation tool developed allows two very similar species in mixed Mediterranean conifer forest to be discriminated using continuous spatial information at the surface: Pleiades images and open source LiDAR data. This approach is easily applicable over large areas, enhancing the economic value of non-wood forest products and aiding forest managers to accurately predict production.Numéro de notice : A2019-180 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-019-0835-x Date de publication en ligne : 17/05/2019 En ligne : https://doi.org/10.1007/s13595-019-0835-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92700
in Annals of Forest Science > vol 76 n° 2 (June 2019)[article]