Détail de l'auteur
Auteur Ali Khazaal |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Improving the spatial bias correction algorithm in SMOS image reconstruction processor : validation of soil moisture retrievals with in situ data / Ali Khazaal in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
[article]
Titre : Improving the spatial bias correction algorithm in SMOS image reconstruction processor : validation of soil moisture retrievals with in situ data Type de document : Article/Communication Auteurs : Ali Khazaal, Auteur ; Philippe Richaume, Auteur ; François Cabot, Auteur ; Eric Anterrieu, Auteur ; Arnaud Mialon, Auteur ; Yann H. Kerr, Auteur Année de publication : 2019 Article en page(s) : pp 277 - 290 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] correction d'image
[Termes IGN] erreur systématique
[Termes IGN] humidité du sol
[Termes IGN] image SMOS
[Termes IGN] résidu
[Termes IGN] télédétection en hyperfréquence
[Termes IGN] température de luminanceRésumé : (Auteur) SMOS is a space mission led by the European Space Agency and designed to provide global maps of Soil Moisture and Ocean salinity, two important geophysical parameters for understanding the water cycle variations and climate change. The SMOS payload is a 2-D interferometer operating at L-band that consists of 69 elementary antennas located along a Y-shaped structure. Important spatial biases persist in the retrieved brightness temperature (BT) images mainly due to the phenomenon of aliasing inside the field of view of SMOS but also due to the Gibbs oscillations near land/ocean transitions. To minimize these biases, a differential image reconstruction algorithm is used in the operational processor that reduces the contrast of the image to be retrieved. To do that, the contribution of a constant artificial temperature map is removed from the measurements prior to reconstruction and then added back after the reconstruction. In this paper, we show that strong residual biases are still present in the retrieved images. To reduce them, we propose to improve the bias correction algorithm by using a more realistic artificial temperature scene based on separating the land and ocean regions and assigning a constant temperature over land and a Fresnel BT model over the ocean. The artificial scene is also improved by means of representing each pixel by its water fraction percentage to smooth the land/ocean transitions. The improved algorithm is validated over the ocean by comparing the retrieved temperatures to a forward geophysical model but also over land by comparing the retrieved soil moisture to in situ measurements. Numéro de notice : A2019-106 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2853619 Date de publication en ligne : 09/08/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2853619 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92412
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 1 (January 2019) . - pp 277 - 290[article]