Détail de l'auteur
Auteur Shunping Ji |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A combination of convolutional and graph neural networks for regularized road surface extraction / Jingjing Yan in IEEE Transactions on geoscience and remote sensing, vol 60 n° 2 (February 2022)
[article]
Titre : A combination of convolutional and graph neural networks for regularized road surface extraction Type de document : Article/Communication Auteurs : Jingjing Yan, Auteur ; Shunping Ji, Auteur ; Yao Wei, Auteur Année de publication : 2022 Article en page(s) : n° 4409113 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Bavière (Allemagne)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] image aérienne
[Termes IGN] jeu de données
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régression
[Termes IGN] réseau neuronal de graphes
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Road surface extraction from high-resolution remote sensing images has many engineering applications; however, extracting regularized and smooth road surface maps that reach the human delineation level is a very challenging task, and substantial and time-consuming manual work is usually unavoidable. In this article, to solve this problem, we propose a novel regularized road surface extraction framework by introducing a graph neural network (GNN) for processing the road graph that is preconstructed from the easily accessible road centerlines. The proposed framework formulates the road surface extraction problem as two-sided width inference of the road graph and consists of a convolutional neural network (CNN)-based feature extractor and a GNN model for vertex attribute adjustment. The CNN extracts the high-level abstract features of each vertex in the graph as the input of the GNN and also the road boundary features that allow us to distinguish roads from the background. The GNN propagates and aggregates the features of the vertices in the graph to achieve global optimization of the regression of the regularized widths of the vertices. At the same time, a biased centerline map can also be corrected based on the width prediction result. To the best of the authors’ knowledge, this is the first study to have introduced a GNN to regularized human-level road surface extraction. The proposed method was evaluated on four diverse datasets, and the results show that the proposed method comprehensively outperforms the recent CNN-based segmentation methods and other regularization methods in the intersection over union (IoU) and smoothness score, and a visual check shows that a majority of the prediction results of the proposed method approach the human delineation level. Numéro de notice : A2022-297 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3151688 Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3151688 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100355
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 2 (February 2022) . - n° 4409113[article]CNN-based dense image matching for aerial remote sensing images / Shunping Ji in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 6 (June 2019)
[article]
Titre : CNN-based dense image matching for aerial remote sensing images Type de document : Article/Communication Auteurs : Shunping Ji, Auteur ; Jin Liu, Auteur ; Meng Lu, Auteur Année de publication : 2019 Article en page(s) : pp 415 - 424 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] appariement dense
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] couple stéréoscopique
[Termes IGN] image aérienne
[Termes IGN] Munich
[Termes IGN] réseau neuronal convolutif
[Termes IGN] Stuttgart
[Termes IGN] ville
[Termes IGN] zone urbaineRésumé : (Auteur) Dense stereo matching plays a key role in 3D reconstruction. The capability of using deep learning in the stereo matching of remote sensing data is currently uncertain. This article investigated the application of deep learning–based stereo methods in aerial image series and proposed a deep learning–based multi-view dense matching framework. First, we applied three typical convolutional neural network models, MC-CNN, GC-Net, and DispNet, to aerial stereo pairs and compared the results with those of the SGM and a commercial software, SURE. Second, on different data sets, the generalization ability of each network is evaluated by using direct transfer learning with models pretrained on other data sets and by fine-tuning with a small number of target training data. Third, we present a deep learning–based multi-view dense matching framework where the multi-view geometry is introduced to further refine matching results. Three sets of aerial images as the main data sets and two open-source sets of street images as auxiliary data sets are used for testing. Experiments show that, first, the performance of deep learning–based stereo methods is slightly better than traditional methods. Second, both the GC-Net and the MC-CNN have demonstrated good generalization ability and can obtain satisfactory results on aerial images using a pretrained model on several available stereo benchmarks. Third, multi-view geometry constraints can further improve the performance of deep learning–based methods, which is better than that of the multi-view–based SGM and SURE. Numéro de notice : A2019-246 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.6.415 Date de publication en ligne : 01/06/2019 En ligne : https://doi.org/10.14358/PERS.85.6.415 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93002
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 6 (June 2019) . - pp 415 - 424[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019061 SL Revue Centre de documentation Revues en salle Disponible