Détail de l'auteur
Auteur Yaping Lin |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Weakly supervised semantic segmentation of airborne laser scanning point clouds / Yaping Lin in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
[article]
Titre : Weakly supervised semantic segmentation of airborne laser scanning point clouds Type de document : Article/Communication Auteurs : Yaping Lin, Auteur ; M. George Vosselman, Auteur ; Michael Ying Yang, Auteur Année de publication : 2022 Article en page(s) : pp 79 - 100 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] chevauchement
[Termes IGN] classification dirigée
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] hétérogénéité sémantique
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) While modern deep learning algorithms for semantic segmentation of airborne laser scanning (ALS) point clouds have achieved considerable success, the training process often requires a large number of labelled 3D points. Pointwise annotation of 3D point clouds, especially for large scale ALS datasets, is extremely time-consuming work. Weak supervision that only needs a few annotation efforts but can make networks achieve comparable performance is an alternative solution. Assigning a weak label to a subcloud, a group of points, is an efficient annotation strategy. With the supervision of subcloud labels, we first train a classification network that produces pseudo labels for the training data. Then the pseudo labels are taken as the input of a segmentation network which gives the final predictions on the testing data. As the quality of pseudo labels determines the performance of the segmentation network on testing data, we propose an overlap region loss and an elevation attention unit for the classification network to obtain more accurate pseudo labels. The overlap region loss that considers the nearby subcloud semantic information is introduced to enhance the awareness of the semantic heterogeneity within a subcloud. The elevation attention helps the classification network to encode more representative features for ALS point clouds. For the segmentation network, in order to effectively learn representative features from inaccurate pseudo labels, we adopt a supervised contrastive loss that uncovers the underlying correlations of class-specific features. Extensive experiments on three ALS datasets demonstrate the superior performance of our model to the baseline method (Wei et al., 2020). With the same amount of labelling efforts, for the ISPRS benchmark dataset, the Rotterdam dataset and the DFC2019 dataset, our method rises the overall accuracy by 0.062, 0.112 and 0.031, and the average F1 score by 0.09, 0.178 and 0.043 respectively. Our code is publicly available at ‘https://github.com/yaping222/Weak_ALS.git’. Numéro de notice : A2022-227 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.001 Date de publication en ligne : 11/03/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100197
in ISPRS Journal of photogrammetry and remote sensing > vol 187 (May 2022) . - pp 79 - 100[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022051 SL Revue Centre de documentation Revues en salle Disponible 081-2022053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Active and incremental learning for semantic ALS point cloud segmentation / Yaping Lin in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
[article]
Titre : Active and incremental learning for semantic ALS point cloud segmentation Type de document : Article/Communication Auteurs : Yaping Lin, Auteur ; M. George Vosselman, Auteur ; Yanpeng Cao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 73 - 92 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] classification dirigée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] entropie
[Termes IGN] incertitude des données
[Termes IGN] itération
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Supervised training of a deep neural network for semantic segmentation of point clouds requires a large amount of labelled data. Nowadays, it is easy to acquire a huge number of points with high density in large-scale areas using current LiDAR and photogrammetric techniques. However it is extremely time-consuming to manually label point clouds for model training. In this paper, we propose an active and incremental learning strategy to iteratively query informative point cloud data for manual annotation and the model is continuously trained to adapt to the newly labelled samples in each iteration. We evaluate the data informativeness step by step and effectively and incrementally enrich the model knowledge. The data informativeness is estimated by two data dependent uncertainty metrics (point entropy and segment entropy) and one model dependent metric (mutual information). The proposed methods are tested on two datasets. The results indicate the proposed uncertainty metrics can enrich current model knowledge by selecting informative samples, such as considering points with difficult class labels and choosing target objects with various geometries in the labelled training pool. Compared to random selection, our metrics provide valuable information to significantly reduce the labelled training samples. In contrast with training from scratch, the incremental fine-tuning strategy significantly save the training time. Numéro de notice : A2020-638 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.09.003 Date de publication en ligne : 14/09/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.09.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96061
in ISPRS Journal of photogrammetry and remote sensing > vol 169 (November 2020) . - pp 73 - 92[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Semantic façade segmentation from airborne oblique images / Yaping Lin in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 6 (June 2019)
[article]
Titre : Semantic façade segmentation from airborne oblique images Type de document : Article/Communication Auteurs : Yaping Lin, Auteur ; Francesco Nex, Auteur ; Michael Ying Yang, Auteur Année de publication : 2019 Article en page(s) : pp 425 - 433 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] façade
[Termes IGN] image aérienne oblique
[Termes IGN] image RVB
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) In this paper, oblique airborne images with very high resolution are used to address the problem from aerial views in urban areas. Traditional classification method (i.e., random forests) is compared with state-of-the-art fully convolutional networks (FCNs). Random forests use hand-craft image features including red, green, blue (RGB), scale-invariant feature transform (SIFT), and Texton, and point cloud features consisting of normal vector and planarity extracted from different scales. In contrast, the inputs of FCNs are the RGB bands and the third components of normal vectors. In both cases, three-dimensional (3D) features are projected back into the image space to support the facade interpretation. Fully connected conditional random field (CRF) is finally taken as a post-processing of the FCN to refine the segmentation results. Several tests have been performed and the achieved results show that the models embedding the 3D component outperform the solution using only images. FCNs significantly outperformed random forests, especially for the balcony delineation. Numéro de notice : A2019-247 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.6.425 Date de publication en ligne : 01/06/2019 En ligne : https://doi.org/10.14358/PERS.85.6.425 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93003
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 6 (June 2019) . - pp 425 - 433[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019061 SL Revue Centre de documentation Revues en salle Disponible